Targeting redox-sensitive MBD2–NuRD condensate in cancer cells

Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vervoort, S. J. et al. Targeting transcription cycles in cancer. Nat. Rev. Cancer 22, 5–24 (2022).

Article  CAS  PubMed  Google Scholar 

Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

Article  CAS  PubMed  Google Scholar 

Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).

Article  CAS  PubMed  Google Scholar 

Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).

Article  CAS  PubMed  Google Scholar 

Papanicolau-Sengos, A. & Aldape, K. DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu. Rev. Pathol. 17, 295–321 (2022).

Article  CAS  PubMed  Google Scholar 

Ginder, G. D. & Williams, D. C. Jr. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther. 184, 98–111 (2018).

Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

Article  CAS  PubMed  Google Scholar 

Mahmood, N. & Rabbani, S. A. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol. 9, 489 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Fraga, M. F. et al. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 31, 1765–1774 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

Article  CAS  PubMed  Google Scholar 

Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reid, X. J., Low, J. K. K. & Mackay, J. P. A NuRD for all seasons. Trends Biochem. Sci. 48, 11–25 (2023).

Article  CAS  PubMed  Google Scholar 

Zhu, D., Hunter, S. B., Vertino, P. M. & Van Meir, E. G. Overexpression of MBD2 in glioblastoma maintains epigenetic silencing and inhibits the antiangiogenic function of the tumor suppressor gene BAI1. Cancer Res. 71, 5859–5870 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, K. et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology 145, 853–864.e9 (2013).

Article  CAS  PubMed  Google Scholar 

Zhang, L. et al. MBD2 facilitates tumor metastasis by mitigating DDB2 expression. Cell Death Dis. 14, 303 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahmood, N., Arakelian, A., Szyf, M. & Rabbani, S. A. Methyl-CpG binding domain protein 2 (Mbd2) drives breast cancer progression through the modulation of epithelial-to-mesenchymal transition. Exp. Mol. Med. 56, 959–974 (2024).

Wang, Y. et al. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci. Adv. 7, eabb6075 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, K. et al. Loss of MBD2 attenuates MLL–AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C. Oncogenesis 10, 79 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, M. Y. et al. Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2. Sci. Adv. 5, eaav9810 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, D. et al. BAI1 suppresses medulloblastoma formation by protecting p53 from Mdm2-mediated degradation. Cancer Cell 33, 1004–1016 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020).

Article  PubMed  Google Scholar 

Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

Article  CAS  PubMed  Google Scholar 

Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

Article  CAS  PubMed  Google Scholar 

Wei, H. & Wen, W. Phase separation in cell polarity. Biochemistry 60, 2677–2684 (2021).

Article  CAS  PubMed  Google Scholar 

Mayr, C. et al. Frontiers in biomolecular condensate research. Nat. Cell Biol. 25, 512–514 (2023).

Article  CAS  PubMed  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gnanapragasam, M. N. et al. p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc. Natl Acad. Sci. USA 108, 7487–7492 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai, M. A. et al. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res. 43, 3100–3113 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leighton, G. & Williams, D. C. Jr. The methyl-CpG-binding domain 2 and 3 proteins and formation of the nucleosome remodeling and deacetylase complex. J. Mol. Biol. 432, 1624–1639 (2020).

Brackertz, M., Boeke, J., Zhang, R. & Renkawitz, R. Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3. J. Biol. Chem. 277, 40958–40966 (2002).

Article  C

Comments (0)

No login
gif