Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vervoort, S. J. et al. Targeting transcription cycles in cancer. Nat. Rev. Cancer 22, 5–24 (2022).
Article CAS PubMed Google Scholar
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
Article CAS PubMed Google Scholar
Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).
Article CAS PubMed Google Scholar
Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).
Article CAS PubMed Google Scholar
Papanicolau-Sengos, A. & Aldape, K. DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu. Rev. Pathol. 17, 295–321 (2022).
Article CAS PubMed Google Scholar
Ginder, G. D. & Williams, D. C. Jr. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther. 184, 98–111 (2018).
Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).
Article CAS PubMed Google Scholar
Mahmood, N. & Rabbani, S. A. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol. 9, 489 (2019).
Article PubMed PubMed Central Google Scholar
Fraga, M. F. et al. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 31, 1765–1774 (2003).
Article CAS PubMed PubMed Central Google Scholar
Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596 (2011).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).
Article CAS PubMed Google Scholar
Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).
Article CAS PubMed PubMed Central Google Scholar
Reid, X. J., Low, J. K. K. & Mackay, J. P. A NuRD for all seasons. Trends Biochem. Sci. 48, 11–25 (2023).
Article CAS PubMed Google Scholar
Zhu, D., Hunter, S. B., Vertino, P. M. & Van Meir, E. G. Overexpression of MBD2 in glioblastoma maintains epigenetic silencing and inhibits the antiangiogenic function of the tumor suppressor gene BAI1. Cancer Res. 71, 5859–5870 (2011).
Article CAS PubMed PubMed Central Google Scholar
Yuan, K. et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology 145, 853–864.e9 (2013).
Article CAS PubMed Google Scholar
Zhang, L. et al. MBD2 facilitates tumor metastasis by mitigating DDB2 expression. Cell Death Dis. 14, 303 (2023).
Article CAS PubMed PubMed Central Google Scholar
Mahmood, N., Arakelian, A., Szyf, M. & Rabbani, S. A. Methyl-CpG binding domain protein 2 (Mbd2) drives breast cancer progression through the modulation of epithelial-to-mesenchymal transition. Exp. Mol. Med. 56, 959–974 (2024).
Wang, Y. et al. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci. Adv. 7, eabb6075 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhou, K. et al. Loss of MBD2 attenuates MLL–AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C. Oncogenesis 10, 79 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kim, M. Y. et al. Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2. Sci. Adv. 5, eaav9810 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhu, D. et al. BAI1 suppresses medulloblastoma formation by protecting p53 from Mdm2-mediated degradation. Cancer Cell 33, 1004–1016 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020).
Article CAS PubMed Google Scholar
Zhang, H. et al. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63, 953–985 (2020).
Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).
Article CAS PubMed Google Scholar
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
Article CAS PubMed Google Scholar
Wei, H. & Wen, W. Phase separation in cell polarity. Biochemistry 60, 2677–2684 (2021).
Article CAS PubMed Google Scholar
Mayr, C. et al. Frontiers in biomolecular condensate research. Nat. Cell Biol. 25, 512–514 (2023).
Article CAS PubMed Google Scholar
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Article CAS PubMed PubMed Central Google Scholar
Gnanapragasam, M. N. et al. p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc. Natl Acad. Sci. USA 108, 7487–7492 (2011).
Article CAS PubMed PubMed Central Google Scholar
Desai, M. A. et al. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res. 43, 3100–3113 (2015).
Article CAS PubMed PubMed Central Google Scholar
Leighton, G. & Williams, D. C. Jr. The methyl-CpG-binding domain 2 and 3 proteins and formation of the nucleosome remodeling and deacetylase complex. J. Mol. Biol. 432, 1624–1639 (2020).
Brackertz, M., Boeke, J., Zhang, R. & Renkawitz, R. Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3. J. Biol. Chem. 277, 40958–40966 (2002).
Comments (0)