ALDH4A1 functions as an active component of the MPC complex maintaining mitochondrial pyruvate import for TCA cycle entry and tumour suppression

Gray, L. R., Tompkins, S. C. & Taylor, E. B. Regulation of pyruvate metabolism and human disease. Cell Mol. Life Sci. 71, 2577–2604 (2014).

Article  CAS  PubMed  Google Scholar 

Olson, K. A., Schell, J. C. & Rutter, J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem. Sci. 41, 219–230 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).

Article  CAS  PubMed  Google Scholar 

Rauckhorst, A. J. & Taylor, E. B. Mitochondrial pyruvate carrier function and cancer metabolism. Curr. Opin. Genet. Dev. 38, 102–109 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanderperre, B., Bender, T., Kunji, E. R. & Martinou, J. C. Mitochondrial pyruvate import and its effects on homeostasis. Curr. Opin. Cell Biol. 33, 35–41 (2015).

Article  CAS  PubMed  Google Scholar 

Bader, D. A. et al. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab. 1, 70–85 (2019).

Article  CAS  PubMed  Google Scholar 

Vanderperre, B. et al. Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet. PLoS Genet. 12, e1006056 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Vigueira, P. A. et al. Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion. Cell Rep. 7, 2042–2053 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, H. et al. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis. 10, 148 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tian, G. A. et al. MPC1 deficiency promotes CRC liver metastasis via facilitating nuclear translocation of β-catenin. J. Immunol. Res. 2020, 8340329 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300 e287 (2020).

Article  CAS  PubMed  Google Scholar 

Tang, X. P. et al. Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. Lab. Invest. 99, 191–199 (2019).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. MPC1 and MPC2 expressions are associated with favorable clinical outcomes in prostate cancer. BMC Cancer 16, 894 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Aniello, C., Patriarca, E. J., Phang, J. M. & Minchiotti, G. Proline metabolism in tumor growth and metastatic progression. Front. Oncol. 10, 776 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Phang, J. M. & Liu, W. Proline metabolism and cancer. Front. Biosci. 17, 1835–1845 (2012).

Article  CAS  Google Scholar 

Phang, J. M., Liu, W., Hancock, C. N. & Fischer, J. W. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care 18, 71–77 (2015).

Article  CAS  PubMed  Google Scholar 

Pemberton, T. A. et al. Structural studies of yeast delta(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Biochemistry 53, 1350–1359 (2014).

Article  CAS  PubMed  Google Scholar 

Tanner, J. J. Structural biology of proline catabolic enzymes. Antioxid. Redox Signal. 30, 650–673 (2019).

Article  CAS  PubMed  Google Scholar 

Morris, S. M. Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–105 (2002).

Article  CAS  PubMed  Google Scholar 

Geraghty, M. T. et al. Mutations in the delta1-pyrroline 5-carboxylate dehydrogenase gene cause type II hyperprolinemia. Hum. Mol. Genet. 7, 1411–1415 (1998).

Article  CAS  PubMed  Google Scholar 

Valle, D., Goodman, S. I., Applegarth, D. A., Shih, V. E. & Phang, J. M. Type II hyperprolinemia. Delta1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J. Clin. Invest. 58, 598–603 (1976).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava, D. et al. The three-dimensional structural basis of type II hyperprolinemia. J. Mol. Biol. 420, 176–189 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Servet, C., Ghelis, T., Richard, L., Zilberstein, A. & Savoure, A. Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front. Biosci. 17, 607–620 (2012).

Article  CAS  Google Scholar 

Du, J., Zhu, S., Lim, R. R. & Chao, J. R. Proline metabolism and transport in retinal health and disease. Amino Acids 53, 1789–1806 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tavoulari, S. et al. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J. 38, e100785 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Compan, V. et al. Monitoring mitochondrial pyruvate carrier activity in real time using a BRET-based biosensor: investigation of the Warburg effect. Mol Cell 59, 491–501 (2015).

Article  CAS 

Comments (0)

No login
gif