Gray, L. R., Tompkins, S. C. & Taylor, E. B. Regulation of pyruvate metabolism and human disease. Cell Mol. Life Sci. 71, 2577–2604 (2014).
Article CAS PubMed Google Scholar
Olson, K. A., Schell, J. C. & Rutter, J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem. Sci. 41, 219–230 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).
Article CAS PubMed PubMed Central Google Scholar
Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).
Article CAS PubMed PubMed Central Google Scholar
Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).
Article CAS PubMed Google Scholar
Rauckhorst, A. J. & Taylor, E. B. Mitochondrial pyruvate carrier function and cancer metabolism. Curr. Opin. Genet. Dev. 38, 102–109 (2016).
Article CAS PubMed PubMed Central Google Scholar
Vanderperre, B., Bender, T., Kunji, E. R. & Martinou, J. C. Mitochondrial pyruvate import and its effects on homeostasis. Curr. Opin. Cell Biol. 33, 35–41 (2015).
Article CAS PubMed Google Scholar
Bader, D. A. et al. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab. 1, 70–85 (2019).
Article CAS PubMed Google Scholar
Vanderperre, B. et al. Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet. PLoS Genet. 12, e1006056 (2016).
Article PubMed PubMed Central Google Scholar
Vigueira, P. A. et al. Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion. Cell Rep. 7, 2042–2053 (2014).
Article CAS PubMed PubMed Central Google Scholar
Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).
Article CAS PubMed PubMed Central Google Scholar
Zou, H. et al. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis. 10, 148 (2019).
Article PubMed PubMed Central Google Scholar
Tian, G. A. et al. MPC1 deficiency promotes CRC liver metastasis via facilitating nuclear translocation of β-catenin. J. Immunol. Res. 2020, 8340329 (2020).
Article PubMed PubMed Central Google Scholar
Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300 e287 (2020).
Article CAS PubMed Google Scholar
Tang, X. P. et al. Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. Lab. Invest. 99, 191–199 (2019).
Article CAS PubMed Google Scholar
Li, X. et al. MPC1 and MPC2 expressions are associated with favorable clinical outcomes in prostate cancer. BMC Cancer 16, 894 (2016).
Article CAS PubMed PubMed Central Google Scholar
D’Aniello, C., Patriarca, E. J., Phang, J. M. & Minchiotti, G. Proline metabolism in tumor growth and metastatic progression. Front. Oncol. 10, 776 (2020).
Article PubMed PubMed Central Google Scholar
Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).
Article PubMed PubMed Central Google Scholar
Phang, J. M. & Liu, W. Proline metabolism and cancer. Front. Biosci. 17, 1835–1845 (2012).
Phang, J. M., Liu, W., Hancock, C. N. & Fischer, J. W. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care 18, 71–77 (2015).
Article CAS PubMed Google Scholar
Pemberton, T. A. et al. Structural studies of yeast delta(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Biochemistry 53, 1350–1359 (2014).
Article CAS PubMed Google Scholar
Tanner, J. J. Structural biology of proline catabolic enzymes. Antioxid. Redox Signal. 30, 650–673 (2019).
Article CAS PubMed Google Scholar
Morris, S. M. Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–105 (2002).
Article CAS PubMed Google Scholar
Geraghty, M. T. et al. Mutations in the delta1-pyrroline 5-carboxylate dehydrogenase gene cause type II hyperprolinemia. Hum. Mol. Genet. 7, 1411–1415 (1998).
Article CAS PubMed Google Scholar
Valle, D., Goodman, S. I., Applegarth, D. A., Shih, V. E. & Phang, J. M. Type II hyperprolinemia. Delta1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J. Clin. Invest. 58, 598–603 (1976).
Article CAS PubMed PubMed Central Google Scholar
Srivastava, D. et al. The three-dimensional structural basis of type II hyperprolinemia. J. Mol. Biol. 420, 176–189 (2012).
Article CAS PubMed PubMed Central Google Scholar
Servet, C., Ghelis, T., Richard, L., Zilberstein, A. & Savoure, A. Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front. Biosci. 17, 607–620 (2012).
Du, J., Zhu, S., Lim, R. R. & Chao, J. R. Proline metabolism and transport in retinal health and disease. Amino Acids 53, 1789–1806 (2021).
Article CAS PubMed PubMed Central Google Scholar
Tavoulari, S. et al. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J. 38, e100785 (2019).
Article PubMed PubMed Central Google Scholar
Compan, V. et al. Monitoring mitochondrial pyruvate carrier activity in real time using a BRET-based biosensor: investigation of the Warburg effect. Mol Cell 59, 491–501 (2015).
Comments (0)