Myocardial Transit Time Mapping by CMR: A Novel Indicator of Microcirculatory Dysfunction in Cardiac Amyloidosis

Tang ,C.X., Petersen ,S.E., Sanghvi ,M.M., et al. Cardiovascular magnetic resonance imaging for amyloidosis: The state-of-the-art. Trends Cardiovasc Med 29,83–94(2019). https://doi.org/10.1016/j.tcm.2018.06.011

Article  CAS  PubMed  Google Scholar 

Mohty ,D., Damy ,T., Cosnay ,P., et al. Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis 106,528–540(2013). https://doi.org/10.1016/j.acvd.2013.06.051

Article  PubMed  Google Scholar 

Bajwa ,F., O’Connor ,R., Ananthasubramaniam ,K. Epidemiology and clinical manifestations of cardiac amyloidosis. Heart Fail Rev 27,1471–1484(2022). https://doi.org/10.1007/s10741-021-10162-1

Article  PubMed  Google Scholar 

Banypersad ,S.M., Moon ,J.C., Whelan ,C., et al. Updates in cardiac amyloidosis: a review. J Am Heart Assoc 1,e000364(2012). https://doi.org/10.1161/JAHA.111.000364

Article  PubMed  PubMed Central  Google Scholar 

Donnelly ,J.P., Hanna ,M. Cardiac amyloidosis: An update on diagnosis and treatment. Cleve Clin J Med 84,12–26(2017). https://doi.org/10.3949/ccjm.84.s3.02

Article  PubMed  Google Scholar 

Modesto ,K.M., Dispenzieri ,A., Gertz ,M., et al. Vascular abnormalities in primary amyloidosis. Eur Heart J 28,1019–1024(2007). https://doi.org/10.1093/eurheartj/ehm066

Article  PubMed  Google Scholar 

Hongo ,M., Yamamoto ,H., Kohda ,T., et al. Comparison of electrocardiographic findings in patients with AL (primary) amyloidosis and in familial amyloid polyneuropathy and anginal pain and their relation to histopathologic findings. Am J Cardiol 85,849–853(2000). https://doi.org/10.1016/s0002-9149(99)00879-6

Article  CAS  PubMed  Google Scholar 

Schindler ,T.H., Fearon ,W.F., Pelletier-Galarneau ,M., et al. Myocardial Perfusion PET for the Detection and Reporting of Coronary Microvascular Dysfunction: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc Imaging 16,536–548(2023). https://doi.org/10.1016/j.jcmg.2022.12.015

Article  PubMed  Google Scholar 

Bravo ,P.E., Di Carli ,M.F., Dorbala ,S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22,455–464(2017). https://doi.org/10.1007/s10741-017-9628-1

Article  PubMed  PubMed Central  Google Scholar 

Vidal-Perez ,R., Vázquez-García ,R., Barge-Caballero ,G., et al. Diagnostic and prognostic value of cardiac imaging in amyloidosis. World J Cardiol 12,599–614(2020). https://doi.org/10.4330/wjc.v12.i12.599

Article  PubMed  PubMed Central  Google Scholar 

Wan ,K., Sun ,J., Yang ,D., et al. Left Ventricular Myocardial Deformation on Cine MR Images: Relationship to Severity of Disease and Prognosis in Light-Chain Amyloidosis. Radiology 288,73–80(2018). https://doi.org/10.1148/radiol.2018172435

Article  PubMed  Google Scholar 

Lin ,L., Li ,X., Feng ,J., et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 20,2(2018). https://doi.org/10.1186/s12968-017-0419-6

Article  PubMed  PubMed Central  Google Scholar 

Chatzantonis ,G., Bietenbeck ,M., Florian ,A., et al. “Myocardial transit-time” (MyoTT): a novel and easy-to-perform CMR parameter to assess microvascular disease. Clin Res Cardiol 109,488–497(2020). https://doi.org/10.1007/s00392-019-01530-x

Article  CAS  PubMed  Google Scholar 

Chatzantonis ,G., Bietenbeck ,M., Florian ,A., et al. Diagnostic value of the novel CMR parameter “myocardial transit-time” (MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy. Clin Res Cardiol 110,136–145(2021). https://doi.org/10.1007/s00392-020-01661-6

Article  CAS  PubMed  Google Scholar 

Deng ,W., Zhang ,J., Zhao ,R., et al. T1 Mapping Values May Be Associated with Early Myocardial Involvement in Young Patients with Wilson Disease. Radiology: Cardiothoracic Imaging 4,e220145(2022). https://doi.org/10.1148/ryct.220145

Riffel ,J.H., Keller ,M.G.P., Rost ,F., et al. Left ventricular long axis strain: a new prognosticator in non-ischemic dilated cardiomyopathy? J Cardiovasc Magn Reson 18,36(2016). https://doi.org/10.1186/s12968-016-0255-0

Article  PubMed  PubMed Central  Google Scholar 

Li ,X., Wang ,H., Zhao ,R., et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings. Radiology 299,E230–E240(2021). https://doi.org/10.1148/radiol.2021203998

Article  PubMed  Google Scholar 

Schelbert ,E.B., Messroghli ,D.R. State of the Art: Clinical Applications of Cardiac T1 Mapping. Radiology 278,658–676(2016). https://doi.org/10.1148/radiol.2016141802

Article  PubMed  Google Scholar 

Perea ,R.J., Ortiz-Perez ,J.T., Sole ,M., et al. T1 mapping: characterisation of myocardial interstitial space. Insights Imaging 6,189–202(2015). https://doi.org/10.1007/s13244-014-0366-9

Article  PubMed  Google Scholar 

Robinson ,A.A., Chow ,K., Salerno ,M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations. JACC Cardiovasc Imaging 12,2332–2344(2019). https://doi.org/10.1016/j.jcmg.2019.06.031

Article  PubMed  PubMed Central  Google Scholar 

22.Banypersad ,S.M., Fontana ,M., Maestrini ,V., et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36,244–251(2015). https://doi.org/10.1093/eurheartj/ehu444

Article  PubMed  Google Scholar 

23.Salerno ,M., Kramer ,C.M. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging 6,806–822(2013). https://doi.org/10.1016/j.jcmg.2013.05.005

Article  PubMed  PubMed Central  Google Scholar 

24.Reddy ,A., Singh ,V., Karthikeyan ,B., et al. Biventricular Strain Imaging with Cardiac MRI in Genotyped and Histology Validated Amyloid Cardiomyopathy. Cardiogenetics 11,98–110(2021). https://doi.org/10.3390/cardiogenetics11030011

Article  CAS  PubMed  PubMed Central  Google Scholar 

25.Al Suwaidi ,J., Velianou ,J.L., Gertz ,M.A., et al. Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 131,838–841(1999). https://doi.org/10.7326/0003-4819-131-11-199912070-00007

Article  CAS  PubMed  Google Scholar 

26.Ishikawa ,Y., Ishii ,T., Masuda ,S., et al. Myocardial ischemia due to vascular systemic amyloidosis: a quantitative analysis of autopsy findings on stenosis of the intramural coronary arteries. Pathol Int 46,189–194(1996). https://doi.org/10.1111/j.1440-1827.1996.tb03597.x

Article  CAS  PubMed  Google Scholar 

27.Dorbala ,S., Vangala ,D., Bruyere ,J., et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2,358–367(2014). https://doi.org/10.1016/j.jchf.2014.03.009

Article  PubMed  PubMed Central  Google Scholar 

28.Paulus ,W.J., Tschöpe ,C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62,263–271(2013). https://doi.org/10.1016/j.jacc.2013.02.092

Article  PubMed  Google Scholar 

29.Li ,R., Yang ,Z.-G., Xu ,H.-Y., et al. Myocardial Deformation in Cardiac Amyloid Light-chain Amyloidosis: Assessed with 3T Cardiovascular Magnetic Resonance Feature Tracking. Sci Rep 7,3794(2017). https://doi.org/10.1038/s41598-017-03699-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

30.Camici ,P.G., Crea ,F. Coronary microvascular dysfunction. N Engl J Med 356,830–840(2007). https://doi.org/10.1056/NEJMra061889

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif