Zerbi, sV.: On the use of preclinical imaging to explore the principles of brain function in rodent models and their relevance for illnesses of the human mind. Translational Psychiatry 12(1), 155 (2022)
Yang, sZ., Zhuang, sX., Sreenivasan, sK., Mishra, sV., Curran, sT., Cordes, sD.: A robust deep neural network for denoising task-based fmri data: An application to working memory and episodic memory. Medical Image Analysis 60, 101622 (2020)
Pruim, sR.H., Mennes, sM., Rooij, sD., Llera, sA., Buitelaar, sJ.K., Beckmann, sC.F.: Ica-aroma: A robust ica-based strategy for removing motion artifacts from fmri data. Neuroimage 112, 267–277 (2015)
Zhu, sW., Ma, sX., Zhu, sX.-H., Ugurbil, sK., Chen, sW., Wu, sX.: Denoise functional magnetic resonance imaging with random matrix theory based principal component analysis. IEEE Transactions on Biomedical Engineering 69(11), 3377–3388 (2022)
Nguyen, sH.M., Chen, sJ., Glover, sG.H.: Morphological component analysis of functional mri brain networks. IEEE Transactions on Biomedical Engineering 69(10), 3193–3204 (2022)
Fernandes, sF.F., Olesen, sJ.L., Jespersen, sS.N., Shemesh, sN.: Mp-pca denoising of fmri time-series data can lead to artificial activation “spreading”. NeuroImage 273, 120118 (2023)
Theodoropoulos, sC., Chatzichristos, sC., Van Huffel, sS.: Automatic artifact removal of resting-state fmri with deep neural networks. In: IEEE European Signal Processing Conference (EUSIPCO), pp. 1236–1240 (2021)
Heo, sK.-S., Shin, sD.-H., Hung, sS.-C., Lin, sW., Zhang, sH., Shen, sD., Kam, sT.-E.: Deep attentive spatio-temporal feature learning for automatic resting-state fmri denoising. NeuroImage 254, 119127 (2022)
Lim, sM., Heo, sK.-S., Kim, sJ.-M., Kang, sB., Lin, sW., Zhang, sH., Shen, sD., Kam, sT.-E.: A unified multi-modality fusion framework for deep spatio-temporal-spectral feature learning in resting-state fmri denoising. IEEE Journal of Biomedical and Health Informatics 28, 2067–2078 (2024)
Goodfellow, sI., Pouget-Abadie, sJ., Mirza, sM., Xu, sB., Warde-Farley, sD., Ozair, sS., Courville, sA., Bengio, sY.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)
Zong, sY., Zuo, sQ., Ng, sM.K.-P., Lei, sB., Wang, sS.: A new brain network construction paradigm for brain disorder via diffusion-based graph contrastive learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 46(12), 10389–10403 (2024)
Yu, sW., Lei, sB., Ng, sM.K., Cheung, sA.C., Shen, sY., Wang, sS.: Tensorizing gan with high-order pooling for alzheimer’s disease assessment. IEEE Transactions on Neural Networks and Learning Systems 33(9), 4945–4959 (2021)
Jing, sC., Shen, sY., Zhao, sS., Pan, sY., Chen, sC.P., Lei, sB., Wang, sS.: Estimating addiction-related brain connectivity by prior-embedding graph generative adversarial networks. IEEE Transactions on Cybernetics 54(9), 5026–5039 (2024)
Pan, sJ., Zuo, sQ., Wang, sB., Chen, sC.P., Lei, sB., Wang, sS.: Decgan: decoupling generative adversarial network for detecting abnormal neural circuits in alzheimer’s disease. IEEE Transactions on Artificial Intelligence 5(10), 5050–5063 (2024)
Huang, sZ., Zhang, sJ., Zhang, sY., Shan, sH.: Du-gan: Generative adversarial networks with dual-domain u-net-based discriminators for low-dose ct denoising. IEEE Transactions on Instrumentation and Measurement 71, 1–12 (2021)
Yu, sM., Guo, sM., Zhang, sS., Zhan, sY., Zhao, sM., Lukasiewicz, sT., Xu, sZ.: Rirgan: An end-to-end lightweight multi-task learning method for brain mri super-resolution and denoising. Computers in Biology and Medicine 167, 107632 (2023)
Sarkar, sK., Bag, sS., Tripathi, sP.C.: Noise aware content-noise complementary gan with local and global discrimination for low-dose ct denoising. Neurocomputing 582, 127473 (2024)
Ran, sM., Hu, sJ., Chen, sY., Chen, sH., Sun, sH., Zhou, sJ., Zhang, sY.: Denoising of 3d magnetic resonance images using a residual encoder–decoder wasserstein generative adversarial network. Medical image analysis 55, 165–180 (2019)
Wang, sQ., Mahler, sL., Steiglechner, sJ., Birk, sF., Scheffler, sK., Lohmann, sG.: Disgan: Wavelet-informed discriminator guides gan to mri super-resolution with noise cleaning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2452–2461 (2023)
Moghari, sM.D., Zhou, sL., Yu, sB., Young, sN., Moore, sK., Evans, sA., Fulton, sR.R., Kyme, sA.Z.: Efficient radiation dose reduction in whole-brain ct perfusion imaging using a 3d gan: performance and clinical feasibility. Physics in Medicine & Biology 66(7), 075008 (2021)
Bao, sQ., Chen, sY., Bai, sC., Li, sP., Liu, sK., Li, sZ., Zhang, sZ., Wang, sJ., Liu, sC.: Retrospective motion correction for preclinical/clinical magnetic resonance imaging based on a conditional generative adversarial network with entropy loss. NMR in Biomedicine 35(12), 4809 (2022)
Yu, sZ., Zhai, sY., Han, sX., Peng, sT., Zhang, sX.-Y.: Mousegan: Gan-based multiple mri modalities synthesis and segmentation for mouse brain structures. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, pp. 442–450 (2021)
Kolařík, sM., Burget, sR., Uher, sV., Říha, sK., Dutta, sM.K.: Optimized high resolution 3d dense-u-net network for brain and spine segmentation. Applied Sciences 9(3), 404 (2019)
Zhao, sH., Gallo, sO., Frosio, sI., Kautz, sJ.: Loss functions for image restoration with neural networks. IEEE Transactions on computational imaging 3(1), 47–57 (2016)
Ronneberger, sO., Fischer, sP., Brox, sT.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, pp. 234–241 (2015)
Arjovsky, sM., Chintala, sS., Bottou, sL.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
Gulrajani, sI., Ahmed, sF., Arjovsky, sM., Dumoulin, sV., Courville, sA.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017)
Schonfeld, sE., Schiele, sB., Khoreva, sA.: A u-net based discriminator for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8207–8216 (2020)
Azad, sR., Aghdam, sE.K., Rauland, sA., Jia, sY., Avval, sA.H., Bozorgpour, sA., Karimijafarbigloo, sS., Cohen, sJ.P., Adeli, sE., Merhof, sD.: Medical image segmentation review: The success of u-net. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024)
Wang, sY., Yu, sB., Wang, sL., Zu, sC., Lalush, sD.S., Lin, sW., Wu, sX., Zhou, sJ., Shen, sD., Zhou, sL.: 3d conditional generative adversarial networks for high-quality pet image estimation at low dose. Neuroimage 174, 550–562 (2018)
Ledig, sC., Theis, sL., Huszár, sF., Caballero, sJ., Cunningham, sA., Acosta, sA., Aitken, sA., Tejani, sA., Totz, sJ., Wang, sZ., et al: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Yang, sQ., Yan, sP., Zhang, sY., Yu, sH., Shi, sY., Mou, sX., Kalra, sM.K., Zhang, sY., Sun, sL., Wang, sG.: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE transactions on medical imaging 37(6), 1348–1357 (2018)
Simonyan, sK., Zisserman, sA.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Çiçek, sÖ., Abdulkadir, sA., Lienkamp, sS.S., Brox, sT., Ronneberger, sO.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, pp. 424–432 (2016)
Miyato, sT., Kataoka, sT., Koyama, sM., Yoshida, sY.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)
https://alliancecan.ca/: Digital research alliance of canada
Kingma, sD.P., Ba, sJ.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lambers, sH., Segeroth, sM., Albers, sF., Wachsmuth, sL., Alst, sT.M., Faber, sC.: A cortical rat hemodynamic response function for improved detection of bold activation under common experimental conditions. Neuroimage 208, 116446 (2020)
Yu, sB., Zhou, sL., Wang, sL., Shi, sY., Fripp, sJ., Bourgeat, sP.: Ea-gans: edge-aware generative adversarial networks for cross-modality mr image synthesis. IEEE transactions on medical imaging 38(7), 1750–1762 (2019)
Maggioni, sM., Katkovnik, sV., Egiazarian, sK., Foi, sA.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE transactions on image processing 22(1), 119–133 (2012)
Comments (0)