Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881 (2019).
Article CAS PubMed PubMed Central Google Scholar
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).
Article CAS PubMed PubMed Central Google Scholar
Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).
Article CAS PubMed PubMed Central Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
Article CAS PubMed Google Scholar
Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).
Article CAS PubMed Google Scholar
Santos-Rodriguez, G., Voineagu, I. & Weatheritt, R. J. Evolutionary dynamics of circular RNAs in primates. eLife 10, e69148 (2021).
Article CAS PubMed PubMed Central Google Scholar
Patop, I. L. & Kadener, S. circRNAs in Cancer. Curr. Opin. Genet. Dev. 48, 121–127 (2018).
Article CAS PubMed Google Scholar
Patop, I. L., Wust, S. & Kadener, S. Past, present, and future of circRNAs. EMBO J. 38, e100836 (2019).
Article PubMed PubMed Central Google Scholar
Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).
Article CAS PubMed Google Scholar
Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 (2019).
Article CAS PubMed Google Scholar
Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).
Conn, V. M. et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 41, 1309–1326 (2023).
Article CAS PubMed Google Scholar
Rosenbluh, J. et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hahn, W. C. et al. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).
Article CAS PubMed PubMed Central Google Scholar
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
Article CAS PubMed PubMed Central Google Scholar
Chen, L. L. et al. A guide to naming eukaryotic circular RNAs. Nat. Cell Biol. 25, 1–5 (2023).
Article PubMed PubMed Central Google Scholar
Rosenbluh, J. et al. Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8, 15403 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rosenbluh, J. et al. Genetic and proteomic interrogation of lower confidence candidate genes reveals signaling networks in β-catenin-active cancers. Cell Syst. 3, 302–316 (2016).
Article CAS PubMed PubMed Central Google Scholar
Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).
Article CAS PubMed PubMed Central Google Scholar
Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).
Article CAS PubMed PubMed Central Google Scholar
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).
Article CAS PubMed PubMed Central Google Scholar
Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).
Article CAS PubMed Google Scholar
Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).
Article CAS PubMed Google Scholar
Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).
Article CAS PubMed Google Scholar
Strappazzon, F. et al. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. 27, 1155–1168 (2020).
Article CAS PubMed Google Scholar
Pamudurti, N. R. et al. circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep. 39, 110740 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).
Article CAS PubMed PubMed Central Google Scholar
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
Article CAS PubMed PubMed Central Google Scholar
Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).
Article CAS PubMed PubMed Central Google Scholar
Fang, W., Mu, J., Yang, Y. & Liu, L. CircRERE confers the resistance of multiple myeloma to bortezomib depending on the regulation of CD47 by exerting the sponge effect on miR-152-3p. J. Bone Oncol. 30, 100381 (2021).
Comments (0)