Systematic loss-of-function screens identify pathway-specific functional circular RNAs

Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

Article  CAS  PubMed  Google Scholar 

Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

Article  CAS  PubMed  Google Scholar 

Santos-Rodriguez, G., Voineagu, I. & Weatheritt, R. J. Evolutionary dynamics of circular RNAs in primates. eLife 10, e69148 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patop, I. L. & Kadener, S. circRNAs in Cancer. Curr. Opin. Genet. Dev. 48, 121–127 (2018).

Article  CAS  PubMed  Google Scholar 

Patop, I. L., Wust, S. & Kadener, S. Past, present, and future of circRNAs. EMBO J. 38, e100836 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 (2019).

Article  CAS  PubMed  Google Scholar 

Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

Article  PubMed  Google Scholar 

Conn, V. M. et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 41, 1309–1326 (2023).

Article  CAS  PubMed  Google Scholar 

Rosenbluh, J. et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hahn, W. C. et al. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L. L. et al. A guide to naming eukaryotic circular RNAs. Nat. Cell Biol. 25, 1–5 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Rosenbluh, J. et al. Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8, 15403 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenbluh, J. et al. Genetic and proteomic interrogation of lower confidence candidate genes reveals signaling networks in β-catenin-active cancers. Cell Syst. 3, 302–316 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

Article  CAS  PubMed  Google Scholar 

Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

Article  CAS  PubMed  Google Scholar 

Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).

Article  CAS  PubMed  Google Scholar 

Strappazzon, F. et al. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. 27, 1155–1168 (2020).

Article  CAS  PubMed  Google Scholar 

Pamudurti, N. R. et al. circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep. 39, 110740 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang, W., Mu, J., Yang, Y. & Liu, L. CircRERE confers the resistance of multiple myeloma to bortezomib depending on the regulation of CD47 by exerting the sponge effect on miR-152-3p. J. Bone Oncol. 30, 100381 (2021).

Article  PubMed  PubMed Central 

Comments (0)

No login
gif