OpenAI, Achiam J, Adler S, et al. GPT-4 Technical Report. arXiv; 2023. https://doi.org/10.48550/arXiv.2303.08774.
Gebrael G, Sahu KK, Chigarira B, et al. Enhancing Triage Efficiency and Accuracy in Emergency Rooms for Patients with Metastatic Prostate Cancer: A Retrospective Analysis of Artificial Intelligence-Assisted Triage Using ChatGPT 4.0. Cancers. Multidisciplinary Digital Publishing Institute; 2023;15(14):3717. https://doi.org/10.3390/cancers15143717.
Jiang LY, Liu XC, Nejatian NP, et al. Health system-scale language models are all-purpose prediction engines. Nature. Nature Publishing Group; 2023;619(7969):357–362. https://doi.org/10.1038/s41586-023-06160-y.
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. arXiv; 2023. https://doi.org/10.48550/arXiv.1706.03762.
Common Crawl - Open Repository of Web Crawl Data. . https://commoncrawl.org/. Accessed February 14, 2024.
Gao L, Biderman S, Black S, et al. The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv; 2020. https://doi.org/10.48550/arXiv.2101.00027.
Swinburne NC, Mendelson D, Rubin DL. Advancing Semantic Interoperability of Image Annotations: Automated Conversion of Non-standard Image Annotations in a Commercial PACS to the Annotation and Image Markup. J Digit Imaging. 2020;33(1):49–53. https://doi.org/10.1007/s10278-019-00191-6.
Swinburne NC, Yadav V, Kim J, et al. Semisupervised Training of a Brain MRI Tumor Detection Model Using Mined Annotations. Radiology. Radiological Society of North America; 2022;210817. https://doi.org/10.1148/radiol.210817.
Swinburne NC, Yadav V, Murthy KNK, et al. Fast, light, and scalable: harnessing data-mined line annotations for automated tumor segmentation on brain MRI. Eur Radiol. 2023;33(9):6582–6591. https://doi.org/10.1007/s00330-023-09583-3.
Article CAS PubMed PubMed Central Google Scholar
Kirillov A, Mintun E, Ravi N, et al. Segment Anything. arXiv; 2023. https://doi.org/10.48550/arXiv.2304.02643.
Deng R, Cui C, Liu Q, et al. Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot Segmentation on Whole Slide Imaging. arXiv; 2023. https://doi.org/10.48550/arXiv.2304.04155.
Roy S, Wald T, Koehler G, et al. SAM.MD: Zero-shot medical image segmentation capabilities of the Segment Anything Model. arXiv; 2023. https://doi.org/10.48550/arXiv.2304.05396.
Hu C, Xia T, Ju S, Li X. When SAM Meets Medical Images: An Investigation of Segment Anything Model (SAM) on Multi-phase Liver Tumor Segmentation. arXiv; 2023. https://doi.org/10.48550/arXiv.2304.08506.
He S, Bao R, Li J, et al. Computer-Vision Benchmark Segment-Anything Model (SAM) in Medical Images: Accuracy in 12 Datasets. arXiv; 2023. https://doi.org/10.48550/arXiv.2304.09324.
Ma J, He Y, Li F, Han L, You C, Wang B. Segment anything in medical images. Nat Commun. Nature Publishing Group; 2024;15(1):654. https://doi.org/10.1038/s41467-024-44824-z.
Dutta A, Zisserman A. The VIA Annotation Software for Images, Audio and Video. Proceedings of the 27th ACM International Conference on Multimedia. New York, NY, USA: Association for Computing Machinery; 2019. p. 2276–2279. https://doi.org/10.1145/3343031.3350535.
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015.
Armato SG, McLennan G, Bidaut L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915–931. https://doi.org/10.1118/1.3528204.
Article PubMed PubMed Central Google Scholar
Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J Digit Imaging. 2013;26(6):1045–1057. https://doi.org/10.1007/s10278-013-9622-7.
Article PubMed PubMed Central Google Scholar
Armato III SG, McLennan G, Bidaut L, et al. Data From LIDC-IDRI. The Cancer Imaging Archive; 2015. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX.
Yu AC, Mohajer B, Eng J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiology: Artificial Intelligence. Radiological Society of North America; 2022;4(3):e210064. https://doi.org/10.1148/ryai.210064.
Shuo Wang null, Mu Zhou null, Gevaert O, et al. A multi-view deep convolutional neural networks for lung nodule segmentation. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:1752–1755. https://doi.org/10.1109/EMBC.2017.8037182.
Wang S, Zhou M, Liu Z, et al. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med Image Anal. 2017;40:172–183. https://doi.org/10.1016/j.media.2017.06.014.
Article PubMed PubMed Central Google Scholar
Lin E, Yuh EL. Semi-supervised learning for generalizable intracranial hemorrhage detection and segmentation. Radiology: Artificial Intelligence.
Comments (0)