Caspase-11 mediated inflammasome activation in macrophages by systemic infection of A. actinomycetemcomitans exacerbates arthritis

Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).

CAS  PubMed  Google Scholar 

Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Lavu, V. et al. Polymorphic regions in the interleukin-1 gene and susceptibility to chronic periodontitis: A genetic association study. Genet. Test. Mol. Biomark. 19, 175–181 (2015).

CAS  Google Scholar 

Zhu, J. et al. Interleukin-6-174G/C Polymorphism Contributes to Periodontitis Susceptibility: An Updated Meta-Analysis of 21 Case-Control Studies. Dis. Markers 2016, 9612421 (2016).

PubMed  PubMed Central  Google Scholar 

Ding, C., Ji, X., Chen, X., Xu, Y. & Zhong, L. TNF-α gene promoter polymorphisms contribute to periodontitis susceptibility: Evidence from 46 studies. J. Clin. Periodontol. 41, 748–759 (2014).

CAS  PubMed  Google Scholar 

Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral. Microbiol. 27, 409–419 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Chowdhury, S. & Chakraborty, P. P. Universal health coverage ‑ There is more to it than meets the eye. J. Fam. Med. Prim. Care 6, 169–170 (2017).

Google Scholar 

Mintz, K. P. actinornycetemconzitans. (2000).

Garib, B. T. & Qaradaxi, S. S. Temporomandibular joint problems and periodontal condition in rheumatoid arthritis patients in relation to their rheumatologic status. J. Oral. Maxillofac. Surg. 69, 2971–2978 (2011).

PubMed  Google Scholar 

Sheu, J. J. & Lin, H. C. Association between multiple sclerosis and chronic periodontitis: A population-based pilot study. Eur. J. Neurol. 20, 1053–1059 (2013).

PubMed  Google Scholar 

Nørskov-Lauritsen, N., Claesson, R., Jensen, A. B., Åberg, C. H. & Haubek, D. Aggregatibacter Actinomycetemcomitans: Clinical significance of a pathobiont subjected to ample changes in classification and nomenclature. Pathogens 8, 243 (2019).

PubMed  PubMed Central  Google Scholar 

She, Y. Y. et al. Periodontitis and inflammatory bowel disease: A meta-analysis. BMC Oral. Health 20, 1–11 (2020).

Google Scholar 

Dong, X. et al. ACPAs promote IL-1β production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cell. Mol. Immunol. 17, 261–271 (2020).

CAS  PubMed  Google Scholar 

Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 1–13 (2016).

Google Scholar 

Havemose‐Poulsen, A. et al. Periodontal and Hematological Characteristics Associated With Aggressive Periodontitis, Juvenile Idiopathic Arthritis, and Rheumatoid Arthritis. J. Periodontol. 77, 280–288 (2006).

PubMed  Google Scholar 

Havemose‐Poulsen, A., Sørensen, L. K., Stoltze, K., Bendtzen, K. & Holmstrup, P. Cytokine Profiles in Peripheral Blood and Whole Blood Cell Cultures Associated With Aggressive Periodontitis, Juvenile Idiopathic Arthritis, and Rheumatoid Arthritis. J. Periodontol. 76, 2276–2285 (2005).

PubMed  Google Scholar 

Cortelli, J. R. et al. Aggregatibacter actinomycetemcomitans serotypes and JP2 outcomes related to clinical status over 6 years under periodontal maintenance therapy. Arch. Oral. Biol. 116, 104747 (2020).

CAS  PubMed  Google Scholar 

Figuero, E. et al. Quantification of Periodontal Pathogens in Vascular, Blood, and Subgingival Samples From Patients With Peripheral Arterial Disease or Abdominal Aortic Aneurysms. J. Periodontol. 85, 1182–1193 (2014).

PubMed  Google Scholar 

Walle et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

CAS  PubMed Central  Google Scholar 

Choulaki, C. et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res. Ther. 17, 1–11 (2015).

Google Scholar 

Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

CAS  PubMed  Google Scholar 

Marchesan, J. T. et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol 82, 93–114 (2020).

Google Scholar 

Inoue, M. et al. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal. 5, ra38 (2012).

PubMed  PubMed Central  Google Scholar 

Ranson, N. et al. NLRP3-dependent and-independent processing of interleukin (IL)-1β in active ulcerative colitis. Int. J. Mol. Sci. 20, 57 (2019).

Google Scholar 

Shibata, K. Historical aspects of studies on roles of the inflammasome in the pathogenesis of periodontal diseases. Mol. Oral. Microbiol. 33, 203–211 (2018).

CAS  PubMed  Google Scholar 

Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

CAS  PubMed  Google Scholar 

Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

CAS  PubMed  Google Scholar 

Shenker, B. J. et al. Aggregatibacter actinomycetemcomitans cytolethal distending toxin activates the NLRP3 inflammasome in human macrophages, leading to the release of proinflammatory cytokines. Infect. Immun. 83, 1487–1496 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., Park, M. H., Song, Y. R., Na, H. S. & Chung, J. Aggregatibacter actinomycetemcomitans - Induced AIM2 Inflammasome Activation Is Suppressed by Xylitol in Differentiated THP-1 Macrophages. J. Periodontol. 87, e116–e126 (2016).

CAS  PubMed  Google Scholar 

Ando-Suguimoto, E. S., Benakanakere, M. R., Mayer, M. P. A. & Kinane, D. F. Distinct signaling pathways between human macrophages and primary gingival epithelial cells by aggregatibacter actinomycetemcomitans. Pathogens 9, 1–14 (2020).

Google Scholar 

Rocha, F. R. G. et al. Relevance of Caspase-1 and Nlrp3 Inflammasome on Inflammatory Bone Resorption in A Murine Model of Periodontitis. Sci. Rep. 10, 1–11 (2020).

Google Scholar 

Rodríguez-Lozano, B. et al. Association between severity of periodontitis and clinical activity in rheumatoid arthritis patients: A case-control study. Arthritis Res. Ther. 21, 1–12 (2019).

Google Scholar 

Di Benedetto, A., Gigante, I., Colucci, S. & Grano, M. Periodontal disease: Linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 503754 (2013).

PubMed  PubMed Central  Google Scholar 

Tanaka, D., Kagari, T., Doi, H. & Shimozato, T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119, 195–202 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Ferenbach, D. A. et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int 82, 928–933 (2012).

CAS  PubMed  Google Scholar 

Tanaka, M. et al. Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps. Sci. Rep. 10, 1–11 (2020).

Google Scholar 

DiFranco, K. M. et al. Leukotoxin (Leukothera®) targets active Leukocyte Function Antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway. J. Biol. Chem. 287, 17618–17627 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Dietmann, A. et al. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells. Microb. Pathog. 61–62, 43–50 (2013).

PubMed  PubMed Central  Google Scholar 

Kaur, M., Kachlany, S. C. & Kachlany, S. C. Aggregatibacter actinomycetemcomitans leukotoxin (LtxA; leukothera) induces cofilin dephosphorylation and actin depolymerisation during killing of malignant monocytes. Microbiol. (U.K) 160, 2443–2451 (2014).

CAS  Google Scholar 

Shimada, T. et al. Differential effects of five Aggregatibacter actinomycetemcomitans strains on gingival epithelial cells. Oral. Microbiol. Immunol. 23, 455–458 (2008).

CAS  PubMed  Google Scholar 

Brogan, J. M., Lally, E. T., Poulsen, K., Kilian, M. & Demuth, D. R. Regulation of Actinobacillus actinomycetemcomitans leukotoxin expression: Analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. Infect. Immun. 62, 501–508 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Haubek, D. et al. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 371, 237–242 (2008).

CAS  PubMed 

Comments (0)

No login
gif