Mainecoon: Implementing an Open-Source Web Viewer for DICOM Whole Slide Images with AI-Integrated PACS for Digital Pathology

Beckwith BA: Standards for Digital Pathology and Whole Slide Imaging, Cham: Springer International Publishing, 2016

Book  Google Scholar 

Saco A, Ramírez J, Rakislova N, Mira A, Ordi J: Validation of Whole-Slide Imaging for Histolopathogical Diagnosis: Current State. Pathobiology 83:89-98, 2016

Article  Google Scholar 

Clunie DA: DICOM Format and Protocol Standardization—A Core Requirement for Digital Pathology Success. Toxicologic Pathology 49:738-749, 2021

Article  Google Scholar 

Rakha EA, et al.: Current and future applications of artificial intelligence in pathology: a clinical perspective. Journal of Clinical Pathology 74:409-414, 2021

Article  CAS  Google Scholar 

DICOM Microscopy Bulk Simple Annotations Modules. Available at https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.37.html.

DICOM Work Group-26 Whole Slide Image Dataset. Available at ftp://medical.nema.org/medical/dicom/DataSets/WG26.

Lajara N, Espinosa-Aranda JL, Deniz O, Bueno G: Optimum web viewer application for DICOM whole slide image visualization in anatomical pathology. Computer Methods and Programs in Biomedicine 179:104983, 2019

Article  Google Scholar 

Herrmann MD, et al.: Implementing the DICOM Standard for Digital Pathology. Journal of Pathology Informatics 9:37, 2018

Article  Google Scholar 

Christensen PA, Lee NE, Thrall MJ, Powell SZ, Chevez-Barrios P, Long SW: RecutClub.com: An Open Source, Whole Slide Image-based Pathology Education System. Journal of Pathology Informatics 8:10, 2017

Article  Google Scholar 

Lajara N, Espinosa-Aranda JL, Deniz O, Bueno G: Optimum web viewer application for DICOM whole slide image visualization in anatomical pathology. Comput Methods Programs Biomed 179:104983, 2019

Article  Google Scholar 

Bankhead P, et al.: QuPath: Open source software for digital pathology image analysis. Scientific Reports 7:16878, 2017

Article  Google Scholar 

Kaczmarzyk JR, et al.: Open and reusable deep learning for pathology with WSInfer and QuPath. npj Precision Oncology 8:9, 2024

Article  Google Scholar 

Slim: Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. Available at https://github.com/herrmannlab/slim.

Gorman C, et al.: Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. Nature Communications 14:1572, 2023

Article  CAS  Google Scholar 

OpenLayers. Available at https://github.com/OpenLayers/OpenLayers.

dicomweb-wsi-viewer. Available at https://github.com/GoogleCloudPlatform/dicomweb-wsi-viewer.

Song AH, et al.: Artificial intelligence for digital and computational pathology. Nature Reviews Bioengineering 1:930-949, 2023

Article  CAS  Google Scholar 

Shafi S, Parwani AV: Artificial intelligence in diagnostic pathology. Diagnostic Pathology 18:109, 2023

Article  Google Scholar 

Khened M, Kori A, Rajkumar H, Krishnamurthi G, Srinivasan B: A generalized deep learning framework for whole-slide image segmentation and analysis. Scientific Reports 11:11579, 2021

Article  CAS  Google Scholar 

Sohn JH, et al.: An Open-Source, Vender Agnostic Hardware and Software Pipeline for Integration of Artificial Intelligence in Radiology Workflow. Journal of Digital Imaging: the official journal of the Society for Computer Applications in Radiology 33:1041-1046, 2020

Article  Google Scholar 

Wang Y, et al.: IILS: Intelligent imaging layout system for automatic imaging report standardization and intra-interdisciplinary clinical workflow optimization. EBioMedicine 44:162-181, 2019

Article  CAS  Google Scholar 

Muehlematter UJ, Daniore P, Vokinger KN: Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. The Lancet Digital Health 3:e195-e203, 2021

Article  CAS  Google Scholar 

Korfiatis P, et al.: Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations. Mayo Clinic Proceedings: Digital Health:100188, 2024

Theriault-Lauzier P, et al.: A Responsible Framework for Applying Artificial Intelligence on Medical Images and Signals at the Point of Care: The PACS-AI Platform. Canadian Journal of Cardiology 40:1828-1840, 2024

Article  Google Scholar 

He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K: The practical implementation of artificial intelligence technologies in medicine. Nat Med 25:30-36, 2019

Article  CAS  Google Scholar 

Reyes M, et al.: On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol Artif Intell 2:e190043-e190043, 2020

Article  Google Scholar 

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D: Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17:195-195, 2019

Article  Google Scholar 

Vallez N, Espinosa-Aranda JL, Pedraza A, Deniz O, Bueno G: Deep Learning within a DICOM WSI Viewer for Histopathology. Applied Sciences 13:9527, 2023

Article  CAS  Google Scholar 

Retamero JA, Aneiros-Fernandez J, del Moral RG: Complete Digital Pathology for Routine Histopathology Diagnosis in a Multicenter Hospital Network. Archives of Pathology & Laboratory Medicine 144:221-228, 2019

Article  Google Scholar 

Yan F, Xu Z, Zhong YS, HaiBei Z, Ge CY: Research on Performance Optimization Scheme for Web Front-End and Its Practice: Communications, Signal Processing, and Systems. CSPS 2020. Lecture Notes in Electrical Engineering, 654, 2021.

Oleshchenko L, Burchak P: Web Application State Management Performance Optimization Methods: Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data Engineering and Communications Technologies, 2023.

Raccoon - Web-based DICOMWeb & FHIR ImagingStudy Server, Available at https://github.com/cylab-tw/raccoon.

Keycloak-authentication. Available at https://www.keycloak.org/getting-started/getting-started-docker

Chung, P.C., Tsai, H.W., Wu, J.S., Lin, Y.H., & Cheng, K.-S., US Patent No. US20230289975A1, Segmentation method for lipid droplet in pathological slice image, 2023.

DICOM WG-26 Whole Slide Imaging Annotations Connectathon: Imaging Data Commons entry. Available at https://doi.org/10.5281/zenodo.10822033.

Comments (0)

No login
gif