Significant attenuation of fully automated thrombin generation in newly diagnosed multiple myeloma patients after induction therapy

Leebeek FWG (2016) Update of thrombosis in multiple myeloma. Thromb Res 140(Suppl 1):S76-80. https://doi.org/10.1016/S0049-3848(16)30103-7

Article  CAS  PubMed  Google Scholar 

Rubinstein SM, Tuchman SA (2020) Thrombosis in the modern era of multiple myeloma. Blood 136:1019–1021. https://doi.org/10.1182/blood.2020006648

Article  CAS  PubMed  Google Scholar 

Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364:1046–1060. https://doi.org/10.1056/NEJMra1011442

Article  CAS  PubMed  Google Scholar 

Kristinsson SY, Fears TR, Gridley G et al (2008) Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 112:3582–3586. https://doi.org/10.1182/blood-2008-04-151076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zamagni E, Brioli A, Tacchetti P et al (2011) Multiple myeloma, venous thromboembolism, and treatment-related risk of thrombosis. Semin Thromb Hemost 37:209–219. https://doi.org/10.1055/s-0031-1273085

Article  PubMed  Google Scholar 

Auwerda JJA, Yuana Y, Osanto S et al (2011) Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost 105:14–20. https://doi.org/10.1160/TH10-03-0187

Article  CAS  PubMed  Google Scholar 

Zangari M, Saghafifar F, Mehta P et al (2003) The blood coagulation mechanism in multiple myeloma. Semin Thromb Hemost 29:275–282. https://doi.org/10.1055/s-2003-40965

Article  CAS  PubMed  Google Scholar 

Carr ME, Dent RM, Carr SL (1996) Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma. J Lab Clin Med 128:83–88. https://doi.org/10.1016/s0022-2143(96)90116-x

Article  CAS  PubMed  Google Scholar 

Yasin Z, Quick D, Thiagarajan P et al (1999) Light-chain paraproteins with lupus anticoagulant activity. Am J Hematol 62:99–102. https://doi.org/10.1002/(sici)1096-8652(199910)62:2%3c99::aid-ajh6%3e3.0.co;2-n

Article  CAS  PubMed  Google Scholar 

Zangari M, Saghafifar F, Anaissie E et al (2002) Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul Fibrinolysis 13:187–192. https://doi.org/10.1097/00001721-200204000-00003

Article  CAS  PubMed  Google Scholar 

Elice F, Fink L, Tricot G et al (2006) Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br J Haematol 134:399–405. https://doi.org/10.1111/j.1365-2141.2006.06208.x

Article  CAS  PubMed  Google Scholar 

Hemker HC, Giesen P, Al Dieri R et al (2003) Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 33:4–15. https://doi.org/10.1159/000071636

Article  CAS  PubMed  Google Scholar 

Fotiou D, Sergentanis TN, Papageorgiou L et al (2018) Longer procoagulant phospholipid-dependent clotting time, lower endogenous thrombin potential and higher tissue factor pathway inhibitor concentrations are associated with increased VTE occurrence in patients with newly diagnosed multiple myeloma: results of the prospective ROADMAP-MM-CAT study. Blood Cancer J 8:1–13. https://doi.org/10.1038/s41408-018-0135-y

Article  CAS  Google Scholar 

Gracheva MA, Urnova ES, Sinauridze EI et al (2015) Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma. Leuk Lymphoma 56:3418–3425. https://doi.org/10.3109/10428194.2015.1041385

Article  CAS  PubMed  Google Scholar 

Legendre P, Verstraete E, Martin M et al (2017) Hypocoagulability as assessed by thrombin generation test in newly-diagnosed patients with multiple myeloma. Blood Cells Mol Dis 66:47–49. https://doi.org/10.1016/j.bcmd.2017.08.011

Article  PubMed  Google Scholar 

Dargaud Y, Fouassier M, Bordet JC et al (2019) The challenge of myeloma-related thromboembolic disease: can thrombin generation assay help physicians to better predict the thromboembolic risk and personalize anti-thrombotic prophylaxis? Leuk Lymphoma 60:2572–2575. https://doi.org/10.1080/10428194.2019.1585839

Article  PubMed  Google Scholar 

Nielsen T, Kristensen SR, Gregersen H et al (2021) Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Thromb Res 202:108–118. https://doi.org/10.1016/j.thromres.2021.03.015

Article  CAS  PubMed  Google Scholar 

Li L, Roest M, Sang Y et al (2022) Patients with multiple myeloma have a disbalanced whole blood thrombin generation profile. Front Cardiovasc Med 9:919495. https://doi.org/10.3389/fcvm.2022.919495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petropoulou AD, Gerotziafas GT, Samama MM et al (2008) In vitro study of the hypercoagulable state in multiple myeloma patients treated or not with thalidomide. Thromb Res 121:493–497. https://doi.org/10.1016/j.thromres.2007.05.016

Article  CAS  PubMed  Google Scholar 

Undas A, Zubkiewicz-Usnarska L, Helbig G et al (2015) Induction therapy alters plasma fibrin clot properties in multiple myeloma patients: association with thromboembolic complications. Blood Coagul Fibrinolysis 26:621–627. https://doi.org/10.1097/MBC.0000000000000315

Article  CAS  PubMed  Google Scholar 

Crowley MP, Kevane B, O’Shea SI et al (2016) Plasma thrombin generation and sensitivity to activated protein C among patients with myeloma and monoclonal gammopathy of undetermined significance. Clin Appl Thromb Hemost 22:554–562. https://doi.org/10.1177/1076029615625825

Article  CAS  PubMed  Google Scholar 

Leiba M, Malkiel S, Budnik I et al (2017) Thrombin generation as a predictor of thromboembolic events in multiple myeloma patients. Blood Cells Mol Dis 65:1–7. https://doi.org/10.1016/j.bcmd.2017.03.010

Article  CAS  PubMed  Google Scholar 

Tiong IS, Rodgers SE, Lee CHS, McRae SJ (2017) Baseline and treatment-related changes in thrombin generation in patients with multiple myeloma. Leuk Lymphoma 58:941–949. https://doi.org/10.1080/10428194.2016.1219900

Article  CAS  PubMed  Google Scholar 

Chalayer E, Tardy-Poncet B, Karlin L et al (2018) Thrombin generation in newly diagnosed multiple myeloma during the first three cycles of treatment: an observational cohort study. Res Pract Thromb Haemost 3:89–98. https://doi.org/10.1002/rth2.12161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baccouche H, Hadhri M, Aissi W et al (2019) The hypercoagulable state in multiple myeloma: the contribution of thrombin generation test. Int J Lab Hematol 41:684–690. https://doi.org/10.1111/ijlh.13093

Article  PubMed  Google Scholar 

Velasco-Rodríguez D, Martínez-Alfonzo I, Velasco-Valdazo AE et al (2023) Enhanced thrombin generation detected with ST-Genesia analyzer in patients with newly diagnosed multiple myeloma. J Thromb Thrombolysis 55:464–473. https://doi.org/10.1007/s11239-022-02765-8

Article  CAS  PubMed  Google Scholar 

Baker HA, Brown AR, Mahnken JD et al (2019) Application of risk factors for venous thromboembolism in patients with multiple myeloma starting chemotherapy, a real-world evaluation. Cancer Med 8:455–462. https://doi.org/10.1002/cam4.1927

Article  CAS  PubMed  Google Scholar 

Rajkumar SV, Dimopoulos MA, Palumbo A et al (2014) International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538-548. https://doi.org/10.1016/S1470-2045(14)70442-5

Article  PubMed 

Comments (0)

No login
gif