Abramson DH (2022) Cell free DNA (cfDNA) in the blood of retinoblastoma patients the Robert M. Ellsworth lecture. Ophthalmic Genet 43(6):731–735. https://doi.org/10.1080/13816810.2021.2004433
Article PubMed PubMed Central CAS Google Scholar
Alonso-Herranz L, Albarrán-Juárez J, Bentzon JF (2023) Mechanisms of fibrous cap formation in atherosclerosis. Front Cardiovasc Med 10:1254114. https://doi.org/10.3389/fcvm.2023.1254114
Article PubMed PubMed Central CAS Google Scholar
Angert RM, Leshane ES, Yarnell RW, Johnson KL, Bianchi DW (2004) Cell-free fetal DNA in the cerebrospinal fluid of women during the peripartum period. Am J Obstet Gynecol 190(4):1087–1090. https://doi.org/10.1016/j.ajog.2003.10.562
Article PubMed CAS Google Scholar
Antiochos B, Trejo-Zambrano D, Fenaroli P, Rosenberg A, Baer A, Garg A, Sohn J, Li J, Petri M, Goldman DW, Mecoli C, Casciola-Rosen L, Rosen A (2022) The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. eLife 11:e72103. https://doi.org/10.7554/eLife.72103
Article PubMed PubMed Central CAS Google Scholar
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S (2024) LOX-1 and MMP-9 inhibition attenuates the detrimental effects of delayed rt-PA therapy and improves outcomes after acute ischemic stroke. Circ Res 134(8):954–969. https://doi.org/10.1161/CIRCRESAHA.123.323371
Article PubMed CAS Google Scholar
Aubert O, Ursule-Dufait C, Brousse R, Gueguen J, Racapé M, Raynaud M, Van Loon E, Pagliazzi A, Huang E, Jordan SC, Chavin KD, Gupta G, Kumar D, Alhamad T, Anand S, Sanchez-Garcia J, Abdalla BA, Hogan J, Garro R, Loupy A (2024) Cell-free DNA for the detection of kidney allograft rejection. Nat Med 30(8):2320–2327. https://doi.org/10.1038/s41591-024-03087-3
Article PubMed PubMed Central CAS Google Scholar
Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, Brkic M, Demeestere D, Vanhooren V, Hendrix A, Libert C, Vandenbroucke RE (2016) Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 8(10):1162–1183. https://doi.org/10.15252/emmm.201606271
Article PubMed PubMed Central CAS Google Scholar
Baumann T, de Buhr N, Blume N, Gabriel MM, Ernst J, Fingerhut L, Imker R, Abu-Fares O, Kühnel M, Jonigk DD, Götz F, Falk C, Weissenborn K, Grosse GM, Schuppner R (2024) Assessment of associations between neutrophil extracellular trap biomarkers in blood and thrombi in acute ischemic stroke patients. J Thromb Thrombolysis 57(6):936–946. https://doi.org/10.1007/s11239-024-03004-y
Article PubMed PubMed Central CAS Google Scholar
Bendszus M, Fiehler J, Subtil F, Bonekamp S, Aamodt AH, Fuentes B, Gizewski ER, Hill MD, Krajina A, Pierot L, Simonsen CZ, Zeleňák K, Blauenfeldt RA, Cheng B, Denis A, Deutschmann H, Dorn F, Flottmann F, Gellißen S, Zubel S (2023) Endovascular thrombectomy for acute ischaemic stroke with established large infarct: multicentre, open-label, randomised trial. Lancet 402(10414):1753–1763. https://doi.org/10.1016/S0140-6736(23)02032-9
Bhatia K, Ahmad S, Kindelin A, Ducruet AF (2021) Complement C3a receptor-mediated vascular dysfunction: a complex interplay between aging and neurodegeneration. J Clin Invest 131(1):e144348. https://doi.org/10.1172/JCI144348
Article PubMed PubMed Central CAS Google Scholar
Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer BLJH (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33(8):2032–2040. https://doi.org/10.1161/ATVBAHA.113.301627
Article PubMed PubMed Central CAS Google Scholar
Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144. https://doi.org/10.1111/j.1538-7836.2011.04544.x
Article PubMed PubMed Central CAS Google Scholar
Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, Gahan PB, Hui L, Holdenrieder S, Thierry AR (2021) Towards systematic nomenclature for cell-free DNA. Hum Genet 140(4):565–578. https://doi.org/10.1007/s00439-020-02227-2
Article PubMed CAS Google Scholar
Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420. https://doi.org/10.1038/nri.2016.58
Article PubMed CAS Google Scholar
Cai W, Liu S, Hu M, Huang F, Zhu Q, Qiu W, Hu X, Colello J, Zheng SG, Lu Z (2020) Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res 11(1):108–121. https://doi.org/10.1007/s12975-019-00694-y
Campbell BCV, Khatri P (2020) Stroke. Lancet 396(10244):129–142. https://doi.org/10.1016/S0140-6736(20)31179-X
Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486. https://doi.org/10.1161/STROKEAHA.122.036946
Article PubMed PubMed Central CAS Google Scholar
Cao J, Roth S, Zhang S, Kopczak A, Mami S, Asare Y, Georgakis MK, Messerer D, Horn A, Shemer R, Jacqmarcq C, Picot A, Green JP, Schlegl C, Li X, Tomas L, Dutsch A, Liman TG, Endres M, Liesz A (2024) DNA-sensing inflammasomes cause recurrent atherosclerotic stroke. Nature 633(8029):433–441. https://doi.org/10.1038/s41586-024-07803-4
Article PubMed PubMed Central CAS Google Scholar
Cardelli M, Marchegiani F, Stripoli P, Piacenza F, Recchioni R, Di Rosa M, Giacconi R, Malavolta M, Galeazzi R, Arosio B, Cafarelli F, Spannella F, Cherubini A, Lattanzio F, Olivieri F (2024) Plasma CfDNA abundance as a prognostic biomarker for higher risk of death in geriatric cardiovascular patients. Mech Ageing Dev 219:111934. https://doi.org/10.1016/j.mad.2024.111934
Article PubMed CAS Google Scholar
Chakravadhanula M, Tembe W, Legendre C, Carpentieri D, Liang WS, Bussey KJ, Carpten J, Berens ME, Bhardwaj RD (2014) Detection of an atypical teratoid rhabdoid brain tumor gene deletion in circulating blood using next-generation sequencing. J Child Neurol 29(9):NP81-85. https://doi.org/10.1177/0883073813503904
Chen J, Hou S, Liang Q, He W, Li R, Wang H, Zhu Y, Zhang B, Chen L, Dai X, Zhang T, Ren J, Duan H (2022) Localized degradation of neutrophil extracellular traps by photoregulated enzyme delivery for cancer immunotherapy and metastasis suppression. ACS Nano 16(2):2585–2597. https://doi.org/10.1021/acsnano.1c09318
Article PubMed CAS Google Scholar
Chen X-Q, Tu L, Tang Q, Zou J-S, Yun X, Qin Y-H (2023) DNase I targeted degradation of neutrophil extracellular traps to reduce the damage on IgAV rat. PLoS One 18(10):e0291592. https://doi.org/10.1371/journal.pone.0291592
Article PubMed PubMed Central CAS Google Scholar
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FHY, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. https://doi.org/10.1038/nm1565
Article PubMed CAS Google Scholar
Coates-Park S, Lazaroff C, Gurung S, Rich J, Colladay A, O’Neill M, Butler GS, Overall CM, Stetler-Stevenson WG, Peeney D (2023) Tissue inhibitors of metalloproteinases are proteolytic targets of matrix metalloproteinase 9. Matrix Biology: J Int Soc Matrix Biology 123:59–70. https://doi.org/10.1016/j.matbio.2023.09.002
Dao J, Conway PJ, Subramani B, Meyyappan D, Russell S, Mahadevan D (2023) Using CfDNA and ctdna as oncologic markers: a path to clinical validation. Int J Mol Sci 24(17):13219. https://doi.org/10.3390/ijms241713219
Comments (0)