Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB (2020) Review of indications of FDA-Approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 12(3):738. https://doi.org/10.3390/CANCERS12030738
Article CAS PubMed Google Scholar
Tawbi HA, Schadendorf D, Lipson EJ et al (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386(1):24–34. https://doi.org/10.1056/NEJMoa2109970
Article CAS PubMed PubMed Central Google Scholar
Prasad V, Haslam A, Olivier T (2024) Updated estimates of eligibility and response: immune checkpoint inhibitors. J Clin Oncol 42(16suppl):e14613–e14613. https://doi.org/10.1200/JCO.2024.42.16_SUPPL.E14613
Martins F, Sofiya L, Sykiotis GP et al (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nature Reviews Clinical Oncology 16(9):563–580. https://doi.org/10.1038/s41571-019-0218-0
Postow MA, Sidlow R, Hellmann MD (2018) Immune-Related adverse events associated with immune checkpoint Blockade. N Engl J Med 378(2):158–168. https://doi.org/10.1056/NEJMra1703481
Article CAS PubMed Google Scholar
Wang C, Zoungas S, Yan M et al (2022) Immune checkpoint inhibitors and the risk of major atherosclerotic cardiovascular events in patients with high-risk or advanced melanoma: a retrospective cohort study. Cardiooncology 8(1). https://doi.org/10.1186/S40959-022-00149-8
Li H, Zheng Y, Li B et al (2025) Association among major adverse cardiovascular events with immune checkpoint inhibitors: A systematic review and meta-analysis. J Intern Med 297(1):36–46. https://doi.org/10.1111/JOIM.20028
Article CAS PubMed Google Scholar
Suero-Abreu GA, Zanni MV, Neilan TG (2022) Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC: cardiooncology State-of-the-Art review. JACC CardioOncol 4(5):598–615. https://doi.org/10.1016/J.JACCAO.2022.11.011
Article PubMed PubMed Central Google Scholar
Nitz K, Herrmann J, Lerman A, Lutgens E (2024) Costimulatory and coinhibitory immune checkpoints in atherosclerosis: therapeutic targets in atherosclerosis?? JACC Basic Transl Sci 9(6):827–843. https://doi.org/10.1016/J.JACBTS.2023.12.007
Article PubMed PubMed Central Google Scholar
Drobni ZD, Gongora C, Taron J et al (2023) Impact of immune checkpoint inhibitors on atherosclerosis progression in patients with lung cancer. J Immunother Cancer 11(7):e007307. https://doi.org/10.1136/JITC-2023-007307
Article PubMed PubMed Central Google Scholar
Drobni ZD, Alvi RM, Taron J et al (2020) Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142(24):2299–2311. https://doi.org/10.1161/CIRCULATIONAHA.120.049981
Article CAS PubMed PubMed Central Google Scholar
Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A (2014) Programmed cell Death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in Atherosclerosis-Prone mice. PLoS ONE 9(4):e93280. https://doi.org/10.1371/JOURNAL.PONE.0093280
Article PubMed PubMed Central Google Scholar
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH (2022) Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC State-of-the-Art review. J Am Coll Cardiol 79(6):577–593. https://doi.org/10.1016/j.jacc.2021.11.048
Article CAS PubMed PubMed Central Google Scholar
Gong J, Drobni ZD, Alvi RM et al (2021) Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur J Cancer 158:99–110. https://doi.org/10.1016/J.EJCA.2021.09.010
Article CAS PubMed PubMed Central Google Scholar
Sawamura T, Kume N, Aoyama T et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386(6620):73–77. https://doi.org/10.1038/386073a0
Binder CJ, Papac-Milicevic N, Witztum JL (2016) Innate sensing of oxidation-specific epitopes in health and disease. Nature Reviews Immunology 16(8):485–497. https://doi.org/10.1038/nri.2016.63
Tajiri K, Sekine I (2022) Atherosclerotic cardiovascular events associated with immune checkpoint inhibitors in cancer patients. Jpn J Clin Oncol 52(7):659–664. https://doi.org/10.1093/JJCO/HYAC041
Roy P, Orecchioni M, Ley K (2021) How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nature Reviews Immunology 22(4):251–265. https://doi.org/10.1038/s41577-021-00584-1
Zhao TX, Mallat Z (2019) Targeting the immune system in atherosclerosis: JACC State-of-the-Art review. J Am Coll Cardiol 73(13):1691–1706. https://doi.org/10.1016/J.JACC.2018.12.083
Article CAS PubMed Google Scholar
Laurat E, Poirier B, Tupin E et al (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in Apolipoprotein E-knockout mice. Circulation 104(2):197–202. https://doi.org/10.1161/01.CIR.104.2.197
Article CAS PubMed Google Scholar
Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S (2004) Inhibition of tumor necrosis factor-α reduces atherosclerosis in Apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24(11):2137–2142. https://doi.org/10.1161/01.ATV.0000143933.20616.1B
Boesten LSM, Zadelaar ASM, Van Nieuwkoop A et al (2005) Tumor necrosis factor-α promotes atherosclerotic lesion progression in APOE*3-leiden Transgenic mice. Cardiovasc Res 66(1):179–185. https://doi.org/10.1016/J.CARDIORES.2005.01.001
Article CAS PubMed Google Scholar
Mittal SK, Cho KJ, Ishido S, Roche PA (2015) Interleukin 10 (IL-10)-mediated immunosuppression March-i induction regulates antigen presentation by macrophages but not dendritic cells. J Biol Chem 290(45):27158–27167. https://doi.org/10.1074/JBC.M115.682708/ASSET/24B2D06E-91B3-4A0D-8C8A-A0CB50D0D6A6/MAIN.ASSETS/GR7.JPG
Article CAS PubMed PubMed Central Google Scholar
Singla B, Lin HP, Ahn WM et al (2021) Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovasc Res 118(15):3097. https://doi.org/10.1093/CVR/CVAB369
Article PubMed Central Google Scholar
Foks AC, Kuiper J (2017) Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 174(22):3940–3955. https://doi.org/10.1111/BPH.13802
Article CAS PubMed PubMed Central Google Scholar
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 18(1). https://doi.org/10.1186/S12943-019-1091-2
Poels K, van Leent MMT, Boutros C et al (2020) Immune checkpoint inhibitor therapy aggravates T Cell–Driven plaque inflammation in atherosclerosis. JACC CardioOncol 2(4):599–610. https://doi.org/10.1016/J.JACCAO.2020.08.007
Article PubMed PubMed Central Google Scholar
Poels K, van Leent MMT, Reiche ME et al (2020) Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells 9(9):1987. https://doi.org/10.3390/CELLS9091987
Ewing MM, Karper JC, Abdul S et al (2013) T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int J Cardiol 168(3):1965–1974. https://doi.org/10.1016/J.IJCARD.2012.12.085
Article CAS PubMed Google Scholar
Bu DX, Tarrio M, Maganto-Garcia E et al (2011) Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 31(5):1100–1107. https://doi.org/10.1161/ATVBAHA.111.224709
Article CAS PubMed PubMed Central Google Scholar
Gotsman I, Grabie N, Dacosta R, Sukhova G, Sharpe A, Lichtman AH (2007) Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J Clin Invest 117(10):2974–2982. https://doi.org/10.1172/JCI31344
Article CAS PubMed PubMed Central Google Scholar
Newman JL, Stone JR (2019) Immune checkpoint Inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc Pathol 43:107148. https://doi.org/10.1016/J.CARPATH.2019.107148
Comments (0)