The Evolution of Anti-CD20 Treatment for Multiple Sclerosis: Optimization of Antibody Characteristics and Function

Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400. https://doi.org/10.1002/ana.21363.

Article  CAS  PubMed  Google Scholar 

Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64(7):1270–2. https://doi.org/10.1212/01.WNL.0000159399.81861.D5.

Article  CAS  PubMed  Google Scholar 

Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2006;180(1–2):63–70. https://doi.org/10.1016/j.jneuroim.2006.06.029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88. https://doi.org/10.1056/NEJMoa0706383.

Article  CAS  PubMed  Google Scholar 

Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65(11):1443–8. https://doi.org/10.1001/archneur.65.11.noc80069.

Article  PubMed  Google Scholar 

Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. https://doi.org/10.1056/NEJMoa1601277.

Article  CAS  PubMed  Google Scholar 

Hauser S, Kappos K, Filippi M, et al. 10 years of ocrelizumab treatment in multiple sclerosis: long-term efficacy and safety clinical trial data. Neurolpgy. 2024. https://doi.org/10.1212/WNL.0000000000205584.

Article  Google Scholar 

Lamb YN. Ocrelizumab: a review in multiple sclerosis. Drugs. 2022;82(3):323–34. https://doi.org/10.1007/s40265-022-01672-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

KESIMPTA (ofatumumab). Prescribing information. Novartis; 2024. https://www.novartis.com/us-en/sites/novartis_us/files/kesimpta.pdf. Accessed 6 Mar 2025.

de Seze J, Maillart E, Gueguen A, et al. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol. 2023;14:1004795. https://doi.org/10.3389/fimmu.2023.1004795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

BRIUMVI (ublituximab-xiiy). Prescribing information. TG Therapeutics; 2024. https://www.tgtherapeutics.com/label-prescribing-info/uspi-briumvi.pdf. Accessed 6 Mar 2025.

Hsiao CC, Fransen NL, van den Bosch AMR, et al. White matter lesions in multiple sclerosis are enriched for CD20(dim) CD8(+) tissue-resident memory T cells. Eur J Immunol. 2021;51(2):483–6. https://doi.org/10.1002/eji.202048665.

Article  CAS  PubMed  Google Scholar 

Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry. 1993;14(2):196–204. https://doi.org/10.1002/cyto.990140212.

Article  CAS  PubMed  Google Scholar 

Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506. https://doi.org/10.3324/haematol.2019.243543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee AYS. CD20(+) T cells: an emerging T cell subset in human pathology. Inflamm Res. 2022;71(10–11):1181–9. https://doi.org/10.1007/s00011-022-01622-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol. 2024;271(4):1515–35. https://doi.org/10.1007/s00415-023-12007-3.

Article  PubMed  Google Scholar 

Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74. https://doi.org/10.1159/000082102.

Article  CAS  PubMed  Google Scholar 

Margoni M, Preziosa P, Filippi M, Rocca MA. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. 2022;269(3):1316–34. https://doi.org/10.1007/s00415-021-10744-x.

Article  CAS  PubMed  Google Scholar 

Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71. https://doi.org/10.4049/jimmunol.177.1.362.

Article  CAS  PubMed  Google Scholar 

Cotchett KR, Dittel BN, Obeidat AZ. Comparison of the efficacy and safety of anti-CD20 B cells depleting drugs in multiple sclerosis. Mult Scler Relat Disord. 2021;49: 102787. https://doi.org/10.1016/j.msard.2021.102787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palanichamy A, Jahn S, Nickles D, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6. https://doi.org/10.4049/jimmunol.1400118.

Article  CAS  PubMed  Google Scholar 

Shinoda K, Li R, Rezk A, et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc Natl Acad Sci U S A. 2023;120(3): e2207291120. https://doi.org/10.1073/pnas.2207291120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

von Essen MR, Hansen RH, Hojgaard C, Ammitzboll C, Wiendl H, Sellebjerg F. Ofatumumab modulates inflammatory T cell responses and migratory potential in patients with multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9(4): e200004. https://doi.org/10.1212/NXI.0000000000200004.

Article  Google Scholar 

Schuh E, Berer K, Mulazzani M, et al. Features of human CD3+CD20+ T cells. J Immunol. 2016;197(4):1111–7. https://doi.org/10.4049/jimmunol.1600089.

Article  CAS  PubMed  Google Scholar 

Holley JE, Bremer E, Kendall AC, et al. CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Mult Scler Relat Disord. 2014;3(5):650–8. https://doi.org/10.1016/j.msard.2014.06.001.

Article  PubMed  Google Scholar 

Sabatino JJ Jr, Wilson MR, Calabresi PA, Hauser SL, Schneck JP, Zamvil SS. Anti-CD20 therapy depletes activated myelin-specific CD8(+) T cells in multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(51):25800–7. https://doi.org/10.1073/pnas.1915309116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ochs J, Nissimov N, Torke S, et al. Proinflammatory CD20(+) T cells contribute to CNS-directed autoimmunity. Sci Transl Med. 2022;14(638):eabi4632. https://doi.org/10.1126/scitranslmed.abi4632.

Article  CAS  PubMed  Google Scholar 

von Essen MR, Ammitzboll C, Hansen RH, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142(1):120–32. https://doi.org/10.1093/brain/awy301.

Article  Google Scholar 

von Essen MR, Talbot J, Hansen RHH, et al. Intrathecal CD8(+)CD20(+) T cells in primary progressive multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10(5): e200140. https://doi.org/10.1212/NXI.0000000000200140.

Article  Google Scholar 

Agius MA, Klodowska-Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: Results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2019;25(2):235–45. https://doi.org/10.1177/1352458517740641.

Article  CAS 

Comments (0)

No login
gif