Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400. https://doi.org/10.1002/ana.21363.
Article CAS PubMed Google Scholar
Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64(7):1270–2. https://doi.org/10.1212/01.WNL.0000159399.81861.D5.
Article CAS PubMed Google Scholar
Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2006;180(1–2):63–70. https://doi.org/10.1016/j.jneuroim.2006.06.029.
Article CAS PubMed PubMed Central Google Scholar
Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88. https://doi.org/10.1056/NEJMoa0706383.
Article CAS PubMed Google Scholar
Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65(11):1443–8. https://doi.org/10.1001/archneur.65.11.noc80069.
Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. https://doi.org/10.1056/NEJMoa1601277.
Article CAS PubMed Google Scholar
Hauser S, Kappos K, Filippi M, et al. 10 years of ocrelizumab treatment in multiple sclerosis: long-term efficacy and safety clinical trial data. Neurolpgy. 2024. https://doi.org/10.1212/WNL.0000000000205584.
Lamb YN. Ocrelizumab: a review in multiple sclerosis. Drugs. 2022;82(3):323–34. https://doi.org/10.1007/s40265-022-01672-9.
Article CAS PubMed PubMed Central Google Scholar
KESIMPTA (ofatumumab). Prescribing information. Novartis; 2024. https://www.novartis.com/us-en/sites/novartis_us/files/kesimpta.pdf. Accessed 6 Mar 2025.
de Seze J, Maillart E, Gueguen A, et al. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol. 2023;14:1004795. https://doi.org/10.3389/fimmu.2023.1004795.
Article CAS PubMed PubMed Central Google Scholar
BRIUMVI (ublituximab-xiiy). Prescribing information. TG Therapeutics; 2024. https://www.tgtherapeutics.com/label-prescribing-info/uspi-briumvi.pdf. Accessed 6 Mar 2025.
Hsiao CC, Fransen NL, van den Bosch AMR, et al. White matter lesions in multiple sclerosis are enriched for CD20(dim) CD8(+) tissue-resident memory T cells. Eur J Immunol. 2021;51(2):483–6. https://doi.org/10.1002/eji.202048665.
Article CAS PubMed Google Scholar
Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry. 1993;14(2):196–204. https://doi.org/10.1002/cyto.990140212.
Article CAS PubMed Google Scholar
Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506. https://doi.org/10.3324/haematol.2019.243543.
Article CAS PubMed PubMed Central Google Scholar
Lee AYS. CD20(+) T cells: an emerging T cell subset in human pathology. Inflamm Res. 2022;71(10–11):1181–9. https://doi.org/10.1007/s00011-022-01622-x.
Article CAS PubMed PubMed Central Google Scholar
Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol. 2024;271(4):1515–35. https://doi.org/10.1007/s00415-023-12007-3.
Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74. https://doi.org/10.1159/000082102.
Article CAS PubMed Google Scholar
Margoni M, Preziosa P, Filippi M, Rocca MA. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. 2022;269(3):1316–34. https://doi.org/10.1007/s00415-021-10744-x.
Article CAS PubMed Google Scholar
Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71. https://doi.org/10.4049/jimmunol.177.1.362.
Article CAS PubMed Google Scholar
Cotchett KR, Dittel BN, Obeidat AZ. Comparison of the efficacy and safety of anti-CD20 B cells depleting drugs in multiple sclerosis. Mult Scler Relat Disord. 2021;49: 102787. https://doi.org/10.1016/j.msard.2021.102787.
Article CAS PubMed PubMed Central Google Scholar
Palanichamy A, Jahn S, Nickles D, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6. https://doi.org/10.4049/jimmunol.1400118.
Article CAS PubMed Google Scholar
Shinoda K, Li R, Rezk A, et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc Natl Acad Sci U S A. 2023;120(3): e2207291120. https://doi.org/10.1073/pnas.2207291120.
Article CAS PubMed PubMed Central Google Scholar
von Essen MR, Hansen RH, Hojgaard C, Ammitzboll C, Wiendl H, Sellebjerg F. Ofatumumab modulates inflammatory T cell responses and migratory potential in patients with multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9(4): e200004. https://doi.org/10.1212/NXI.0000000000200004.
Schuh E, Berer K, Mulazzani M, et al. Features of human CD3+CD20+ T cells. J Immunol. 2016;197(4):1111–7. https://doi.org/10.4049/jimmunol.1600089.
Article CAS PubMed Google Scholar
Holley JE, Bremer E, Kendall AC, et al. CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Mult Scler Relat Disord. 2014;3(5):650–8. https://doi.org/10.1016/j.msard.2014.06.001.
Sabatino JJ Jr, Wilson MR, Calabresi PA, Hauser SL, Schneck JP, Zamvil SS. Anti-CD20 therapy depletes activated myelin-specific CD8(+) T cells in multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(51):25800–7. https://doi.org/10.1073/pnas.1915309116.
Article CAS PubMed PubMed Central Google Scholar
Ochs J, Nissimov N, Torke S, et al. Proinflammatory CD20(+) T cells contribute to CNS-directed autoimmunity. Sci Transl Med. 2022;14(638):eabi4632. https://doi.org/10.1126/scitranslmed.abi4632.
Article CAS PubMed Google Scholar
von Essen MR, Ammitzboll C, Hansen RH, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142(1):120–32. https://doi.org/10.1093/brain/awy301.
von Essen MR, Talbot J, Hansen RHH, et al. Intrathecal CD8(+)CD20(+) T cells in primary progressive multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10(5): e200140. https://doi.org/10.1212/NXI.0000000000200140.
Agius MA, Klodowska-Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: Results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2019;25(2):235–45. https://doi.org/10.1177/1352458517740641.
Comments (0)