Misalignment of age clocks

Skinner CM, Conboy MJ, Conboy IM. DNA methylation clocks struggle to distinguish inflammaging from healthy aging, but feature rectification improves coherence and enhances detection of inflammaging. GeroScience. 2025;18:1-8.

Mei X, Blanchard J, Luellen C, Conboy MJ, Conboy IM. Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease. Aging (Albany NY). 2023;15(17):8552.

Article  CAS  PubMed  Google Scholar 

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20.

Article  Google Scholar 

Guo X, Teschendorff AE. Epigenetic clocks and inflammaging: pitfalls caused by ignoring cell-type heterogeneity. GeroScience. 2025. https://doi.org/10.1007/s11357-025-01677-8.

https://datatab.net/tutorial/causality

Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. J Gerontol Series A: Biomed Sci Med Sci. 2014;69(6):640-649.

Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.

Article  CAS  PubMed  Google Scholar 

Shapiro MR, Dong X, Perry DJ, McNichols JM, Thirawatananond P, Posgai AL, Peters LD, Motwani K, Musca RS, Muir A, Concannon P. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight. 2023;8(17):e170767.

Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73.

Article  CAS  PubMed  Google Scholar 

Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD. Clonal dynamics of native haematopoiesis. Nature. 2014;514(7522):322-7.

Montecino-Rodriguez E, Kong Y, Casero D, Rouault A, Dorshkind K, Pioli PD. Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Reports. 2019;12(3):584–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larbi A. From genesis to old age: exploring the immune system one cell at a time with flow cytometry. Biomedicines. 2024;12(7):1469.

Article  PubMed  PubMed Central  Google Scholar 

Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ray D, Yung R. Immune senescence, epigenetics and autoimmunity. Clin Immunol. 2018;196:59–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weyand CM, Shao L, Goronzy JJ. Immune aging and rheumatoid arthritis. Rheum Dis Clin North Am. 2010;36(2):297.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Atkinson J, Burd CE, Graves J, Segal BM. Biological aging in multiple sclerosis. Mult Scler J. 2023;29(14):1701–8.

Article  CAS  Google Scholar 

Levy G. The relationship of Parkinson disease with aging. Arch Neurol. 2007;64(9):1242–6.

Article  PubMed  Google Scholar 

Ramirez P, Zuniga G, Sun W, Beckmann A, Ochoa E, DeVos SL, Hyman B, Chiu G, Roy ER, Cao W, Orr M. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Progress Neurobiol. 2022;208:102181.

Teschendorff AE, Breeze CE, Zheng SC, Beck S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies. BMC Bioinformatics. 2017;18:1–14.

Article  Google Scholar 

Meyer DH, Schumacher B. Aging clocks based on accumulating stochastic variation. Nature Aging. 2024;4(6):871–85.

Article  PubMed  PubMed Central  Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang LI, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R. Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell. 2013;49(2):359-67.

Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM. Naive T cell maintenance and function in human aging. J Immunol. 2015;194(9):4073–80.

Article  CAS  PubMed  Google Scholar 

Gysemans C, Beya M, Pedace E, Mathieu C. Exploring neutrophil heterogeneity and plasticity in health and disease. Biomedicines. 2025;13(3):597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nogalska A, Eerdeng J, Akre S, Vergel-Rodriguez M, Lee Y, Bramlett C, Chowdhury AY, Wang B, Cess CG, Finley SD, Lu R. Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells. Cell Mol Immunol. 2024;24:1-15.

Gomez-Casado G, Jimenez-Gonzalez A, Rodriguez-Muñoz A, Tinahones FJ, González-Mesa E, Murri M, Ortega-Gomez A. Neutrophils as indicators of obesity-associated inflammation: a systematic review and meta-analysis. Obes Rev. 2025;26(3):e13868.

Article  CAS  PubMed  Google Scholar 

Lv J, Zhang C, Liu X, Gu C, Liu Y, Gao Y, Huang Z, Jiang Q, Chen B, He D, Wang T. An aging-related immune landscape in the hematopoietic immune system. Immunity & Ageing. 2024;21(1):3.

Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, inflammaging, and frailty: role of myeloid cells in age-related diseases. Clin Rev Allergy Immunol. 2022;15:1-22.

de Lima Camillo LP, Lapierre LR, Singh R. A pan-tissue DNA-methylation epigenetic clock based on deep learning. npj Aging. 2022;8(1):4.

Prosz A, Pipek O, Börcsök J, Palla G, Szallasi Z, Spisak S, Csabai I. Biologically informed deep learning for explainable epigenetic clocks. Sci Rep. 2024;14(1):1306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dip SA, Ma D, Zhang L. DeepAge: Harnessing Deep Neural Network for Epigenetic Age Estimation From DNA Methylation Data of human blood samples. In Proceedings of the AAAI Symposium Series 2024 (Vol. 4, No. 1, pp. 267-274).

Varshavsky M, Harari G, Glaser B, Dor Y, Shemer R, Kaplan T. Accurate age prediction from blood using a small set of DNA methylation sites and a cohort-based machine learning algorithm. Cell Rep Methods. 2023;3(9).

Takemon Y, Chick JM, Gerdes Gyuricza I, Skelly DA, Devuyst O, Gygi SP, Churchill GA, Korstanje R. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. elife. 2021;10:e62585.

Yamamoto R, Chung R, Vazquez JM, Sheng H, Steinberg PL, Ioannidis NM, Sudmant PH. Tissue-specific impacts of aging and genetics on gene expression patterns in humans. Nat Commun. 2022;13(1):5803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang H, Jiang L, da Veiga Leprevost F, Jian R, Chan J, Glinos D, Lappalainen T, Nesvizhskii AI, Reiner AP, Consortium G, Snyder MP. Regulation of protein abundance in normal human tissues. medRxiv. 2025:2025-01.

Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. Nat Aging. 2024;14:1-6.

Debès C, Papadakis A, Grönke S, Karalay Ö, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A. Ageing-associated changes in transcriptional elongation influence longevity. Nature. 2023;616(7958):814-21.

Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010;9(4):506–18.

Article  CAS  PubMed  Google Scholar 

Kim D, Kiprov DD, Luellen C, Lieb M, Liu C, Watanabe E, Mei X, Cassaleto K, Kramer J, Conboy MJ, Conboy IM. Old plasma dilution reduces human biological age: a clinical study. Geroscience. 2022;44(6):2701-20.

Kedlian VR, Donertas HM, Thornton JM. The widespread increase in inter-individual variability of gene expression in the human brain with age. Aging (Albany NY). 2019;11(8):2253.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif