Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces. 2014;121:474–83. https://doi.org/10.1016/j.colsurfb.2014.05.027.
Article CAS PubMed Google Scholar
Gowda BHJ, et al. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol. 2022;71:103305. https://doi.org/10.1016/j.jddst.2022.103305.
Nagaraja K, Rao KM, Reddy GV, Rao KSVK. Tragacanth gum-based multifunctional hydrogels and green synthesis of their silver nanocomposites for drug delivery and inactivation of multidrug resistant bacteria. Int J Biol Macromol. 2021;174:502–11. https://doi.org/10.1016/j.ijbiomac.2021.01.203.
Article CAS PubMed Google Scholar
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. https://doi.org/10.1186/1477-3155-2-3.
Article PubMed PubMed Central Google Scholar
Thamphiwatana S, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci. 2017;114(43):11488–93. https://doi.org/10.1073/pnas.1714267114.
Article CAS PubMed PubMed Central Google Scholar
Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed. 2017;15(4):241–8. https://doi.org/10.1016/j.jab.2017.03.004.
Lee K-Y, Blaker JJ, Bismarck A. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol. 2009;69(15):2724–33. https://doi.org/10.1016/j.compscitech.2009.08.016.
Mendam K, Kumar-Naik SJ. Anticancer and antioxidant activities of Cyphostemma auriculatum Roxb green mediated silver nanoparticles. Mater Today Proc. 2023;92:618–25. https://doi.org/10.1016/j.matpr.2023.04.126.
Reddy BC, et al. Study on anticancer properties of BaO:Fe2O3:NiO nanocomposites. Appl Surf Sci Adv. 2022;12: 100336. https://doi.org/10.1016/j.apsadv.2022.100336.
Ghatage MM, et al. Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: anticancer, antioxidative, antimicrobial and photocatalytic properties. Appl Surf Sci Adv. 2023;16:100426. https://doi.org/10.1016/j.apsadv.2023.100426.
Courdavault V, O’Connor SE, Oudin A, Besseau S, Papon N. Towards the microbial production of plant-derived anticancer drugs. Trends Cancer. 2020;6(6):444–8. https://doi.org/10.1016/j.trecan.2020.02.004.
Article CAS PubMed Google Scholar
Talib WH, et al. Plants as a source of anticancer agents: from bench to bedside. Molecules. 2022. https://doi.org/10.3390/molecules27154818.
Article PubMed PubMed Central Google Scholar
Yassin MT, Al-Otibi FO, Al-Sahli SA, El-Wetidy MS, Mohamed S. Metal oxide nanoparticles as efficient nanocarriers for targeted cancer therapy: addressing chemotherapy-induced disabilities. Cancers. 2024. https://doi.org/10.3390/cancers16244234.
Article PubMed PubMed Central Google Scholar
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–67. https://doi.org/10.1016/j.cell.2020.02.001.
Article CAS PubMed Google Scholar
Dehelean CA, et al. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 2021. https://doi.org/10.3390/molecules26041109.
Article PubMed PubMed Central Google Scholar
Yassin MT, Mostafa AA-F, Al-Askar AA, Al-Otibi FO. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 2022;12(8):1057. https://doi.org/10.3390/cryst12081057.
Talapko J, Matijević T, Juzbašić M, Antolović-Požgain A, Škrlec I. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8091400.
Article PubMed PubMed Central Google Scholar
Dey G, Bharti R, Sen R, Mandal M. Microbial amphiphiles: a class of promising new-generation anticancer agents. Drug Discov Today. 2015;20(1):136–46. https://doi.org/10.1016/j.drudis.2014.09.006.
Article CAS PubMed Google Scholar
Debela DT, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034370. https://doi.org/10.1177/20503121211034366.
Article PubMed PubMed Central Google Scholar
Cao W, Chen H-D, Yu Y-W, Li N, Chen W-Q. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics. Chin Med J. 2021;134(7):783. https://doi.org/10.1097/CM9.0000000000001474.
Article PubMed PubMed Central Google Scholar
Toumey C. Reading Feynman Into Nanotechnology: A Text for a New Science. 2008.
Bahrulolum H, et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology. 2021;19(1):86. https://doi.org/10.1186/s12951-021-00834-3.
Article PubMed PubMed Central Google Scholar
Rafatmah E, Hemmateenejad B. Metal nanoparticles for sensing applications. In: Barhoum A, Altintas Z, editors. Fundamentals of sensor technology woodhead publishing series in electronic and optical materials. New Delhi: . Woodhead Publishing; 2023. p. 311–66.
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc oxide nanocomposites—extracellular synthesis physicochemical characterization and antibacterial potential. Materials. 2020. https://doi.org/10.3390/ma13194347.
Article PubMed PubMed Central Google Scholar
Dulińska-Litewka J, Dykas K, Felkle D, Karnas K, Khachatryan G, Karewicz A. Hyaluronic acid-silver nanocomposites and their biomedical applications: a review. Materials. 2022. https://doi.org/10.3390/ma15010234.
Gatou M-A, et al. Magnesium oxide (MgO) nanoparticles: synthetic strategies and biomedical applications. Crystals. 2024. https://doi.org/10.3390/cryst14030215.
Huzum B, et al. Biocompatibility assessment of biomaterials used in orthopedic devices: an overview (Review). Exp Ther Med. 2021;22(5):1–9. https://doi.org/10.3892/etm.2021.10750.
Aljeldah MM, Yassin MT, Mostafa AA-F, Aboul-Soud MA. Synergistic antibacterial potential of greenly synthesized silver nanoparticles with fosfomycin against some nosocomial bacterial pathogens. Infect Drug Resist. 2023;16:125–42. https://doi.org/10.2147/IDR.S394600.
Article CAS PubMed PubMed Central Google Scholar
Yassin MT, Mostafa AA-F, Al-Askar AA, Al-Otibi FO. Synergistic antifungal efficiency of biogenic silver nanoparticles with itraconazole against multidrug-resistant candidal strains. Crystals. 2022;12(6):816. https://doi.org/10.3390/cryst12060816.
Hussein HA, Abdullah MA. “Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci. 2022;12(11):3071–96. https://doi.org/10.1007/s13204-021-02018-9.
Soliman MKY, Salem SS, Abu-Elghait M, Azab MS. Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Appl Biochem Biotechnol. 2023;195(2):1158–83. https://doi.org/10.1007/s12010-022-04199-7.
Article CAS PubMed Google Scholar
Sargazi S, et al. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials. 2022. https://doi.org/10.3390/nano12071102.
Comments (0)