Epigenetic effects of endogenous and exogenous glucocorticosteroids during pregnancy on the offspring: a systematic-narrative review

Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75(1):1–12. https://doi.org/10.1016/j.steroids.2009.09.002

Article  PubMed  CAS  Google Scholar 

Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, Carletto A, Pattini P, Corrocher R, Olivieri O (2008) Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis 199(2):323–327. https://doi.org/10.1016/j.atherosclerosis.2007.11.029

Article  PubMed  CAS  Google Scholar 

Tran L, Schulkin J, Ligon CO, Meerveld GV (2015) Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Moleqular Psychiatry 20:1219–1231. https://doi.org/10.1038/mp.2014.122

Article  CAS  Google Scholar 

Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, Nemeroff CB, Smith AK, Bradley B, Heim C, Menke A, Lange JF, Brückl T, Ising M, Wray NR, Erhardt A, Binder EB, Mehta D (2015) Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol 16:266. https://doi.org/10.1186/s13059-015-0828-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Crespi BJ (2020) Why and How Imprinted Genes Drive Fetal Programming. Front Endocrinol 10:940. https://doi.org/10.3389/fendo.2019.00940

Article  Google Scholar 

Barker DJ, Clark PM (1997) Fetal undernutrition and disease in later life. Rev Reprod 2(2):105–112. https://doi.org/10.1530/ror.0.0020105

Article  PubMed  CAS  Google Scholar 

Hockaday TD, Yajnik CS (2003) –to: Hales CN, Barker DJP (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601. https://doi.org/10.1007/s00125-002-1024-1

Article  Google Scholar 

Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST (2017) Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes 8(6):150. https://doi.org/10.3390/genes8060150

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J, Perron P, Brisson D (2010) Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes care 33(11):2436–2441. https://doi.org/10.2337/dc10-1024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Valsamakis G, Papatheodorou D, Chalarakis N, Manolikaki M, Margeli A, Papassotiriou I, Barber TM, Kumar S, Kalantaridou S, Mastorakos G (2020) Maternal chronic stress correlates with serum levels of cortisol, glucose and C-peptide in the fetus and maternal non chronic stress with fetal growth. Psychoneuroendocrinology 114:104591. https://doi.org/10.1016/j.psyneuen.2020.104591

Article  PubMed  CAS  Google Scholar 

Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149. https://doi.org/10.1196/annals.1290.016

Article  PubMed  CAS  Google Scholar 

Zannas AS, Chrousos GP (2015) Glucocorticoid signaling drives epigenetic and transcription factors to induce key regulators of human parturition. Science signaling 8(400):fs19. https://doi.org/10.1126/scisignal.aad3022

Article  PubMed  CAS  Google Scholar 

Konstantakou P, Mastorakos G, Vrachnis N, Tomlinson JW, Valsamakis G (2017) Dysregulation of 11beta-hydroxysteroid dehydrogenases: implications during pregnancy and beyond. J Matern Fetal Neonatal Med 30(3):284–293. https://doi.org/10.3109/14767058.2016.1171308

Article  PubMed  CAS  Google Scholar 

Valsamakis G, Chrousos G, Mastorakos G (2019) Stress, female reproduction and Pregnancy. Psychoneuroendocrinology 100:48–57. https://doi.org/10.1016/j.psyneuen.2018.09.031

Article  PubMed  CAS  Google Scholar 

Zannas AS, Chrousos GP (2017) Epigenetic programming by stress and glucocorticoids along the human lifespan. Molecular psychiatry 22(5):640–646. https://doi.org/10.1038/mp.2017.35

Article  PubMed  CAS  Google Scholar 

Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. The Cochrane database of systematic reviews 3:CD004454. https://doi.org/10.1002/14651858.CD004454.pub2

Article  Google Scholar 

Sotiriadis A, Makrydimas G, Papatheodorou S, Ioannidis JP, McGoldrick E (2018) Corticosteroids for preventing neonatal respiratory morbidity after elective caesarean section at term. The Cochrane database of systematic reviews 8(8):CD006614. https://doi.org/10.1002/14651858.CD006614.pub3

Article  PubMed  Google Scholar 

Hirvikoski T, Nordenström A, Lindholm T, Lindblad F, Ritzén EM, Wedell A, Lajic S (2007) Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J Clin Endocrinol Metab 92(2):542–548. https://doi.org/10.1210/jc.2006-1340

Article  PubMed  CAS  Google Scholar 

Karlsson L, Nordenström A, Hirvikoski T, Lajic S (2018) Prenatal dexamethasone treatment in the context of at risk CAH pregnancies: Long-term behavioral and cognitive outcome. Psychoneuroendocrinology 91:68–74. https://doi.org/10.1016/j.psyneuen.2018.02.033

Article  PubMed  CAS  Google Scholar 

Melamed N, Asztalos E, Murphy K, Zaltz A, Redelmeier D, Shah BR, Barrett J (2019) Neurodevelopmental disorders among term infants exposed to antenatal corticosteroids during pregnancy: a population-based study. BMJ Open 9(9):e031197. https://doi.org/10.1136/bmjopen-2019-031197

Article  PubMed  PubMed Central  Google Scholar 

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1. https://doi.org/10.1186/2046-4053-4-1

Article  Google Scholar 

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clinical research ed.) 350:g7647. https://doi.org/10.1136/bmj.g7647

Article  Google Scholar 

Bogdarina I, Haase A, Langley-Evans S, Clark AJ (2010) Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PloS one 5(2):e9237. https://doi.org/10.1371/journal.pone.0009237

Article  PubMed  PubMed Central  CAS  Google Scholar 

Langley-Evans SC, Welham SJ, Sherman RC, Jackson AA (1996) Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clinical science (London, England: 1979) 91(5):607–615. https://doi.org/10.1042/cs0910607

Article  PubMed  CAS  Google Scholar 

Erhuma A, Salter AM, Sculley DV, Langley-Evans SC, Bennett AJ (2007) Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. American journal of physiology. Endocrinology and metabolism 292(6):E1702–E1714. https://doi.org/10.1152/ajpendo.00605.2006

Article  PubMed  CAS  Google Scholar 

Crudo A, Petropoulos S, Moisiadis VG, Iqbal M, Kostaki A, Machnes Z, Szyf M, Matthews SG (2012) Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153(7):3269–3283. https://doi.org/10.1210/en.2011-2160

Article  PubMed  PubMed Central  CAS  Google Scholar 

Crudo A, Suderman M, Moisiadis VG, Petropoulos S, Kostaki A, Hallett M, Szyf M, Matthews SG (2013) Glucocorticoid programming of the fetal male hippocampal epigenome. Endocrinology 154(3):1168–1180. https://doi.org/10.1210/en.2012-1980

Article  PubMed  CAS  Google Scholar 

Crudo A, Petropoulos S, Suderman M, Moisiadis VG, Kostaki A, Hallett M, Szyf M, Matthews SG (2013) Effects of antenatal synthetic glucocorticoid on glucocorticoid receptor binding, DNA methylation, and genome-wide mRNA levels in the fetal male hippocampus. Endocrinology 154(11):4170–4181. https://doi.org/10.1210/en.2013-1484

Article  PubMed  CAS 

Comments (0)

No login
gif