Ebel, G. D. Update on Powassan virus: emergence of a North American tick-borne flavivirus. Annu Rev. Entomol. 55, 95–110 (2010).
Leonova, G. N. et al. Characterization of Powassan viruses from Far Eastern Russia. Arch. Virol. 154, 811–820 (2009).
Hermance, M. E. & Thangamani, S. Powassan virus: an emerging arbovirus of public health concern in North America. Vector Borne Zoonotic Dis. 17, 453–462 (2017).
PubMed PubMed Central Google Scholar
McLean, D. M. & Larke, R. P. Powassan and Silverwater viruses: ecology of two Ontario arboviruses. Can. Med. Assoc. J. 88, 182–185 (1963).
CAS PubMed PubMed Central Google Scholar
McLean, D. M., Best, J. M., Mahalingam, S., Chernesky, M. A. & Wilson, W. E. Powassan virus: summer infection cycle, 1964. Can. Med. Assoc. J. 91, 1360–1362 (1964).
CAS PubMed PubMed Central Google Scholar
McLean, D. M. et al. Powassan virus: persistence of virus activity during 1966. Can. Med. Assoc. J. 96, 660–664 (1967).
CAS PubMed PubMed Central Google Scholar
Telford, S. R. et al. A new tick-borne encephalitis-like virus infecting New England deer ticks, ixodes dammini. Emerg. Infect. Dis. 3, 165–170 (1997).
PubMed PubMed Central Google Scholar
Ebel, G. D., Campbell, E. N., Goethert, H. K., Spielman, A. & Telford, S. R. 3rd Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am. J. Trop. Med. Hyg. 63, 36–42 (2000).
Artsob, H. Powassan encephalitis. In The Arboviruses: Epidemiology and Ecology, Vol. 2 (ed. Monath, T.) 29–49 (CRC Press, Boca Raton, FL, 1989).
Leonova, G. N., Isachkova, L. M., Baranov, N. I. & Krugliak, S. P. Role of Powassan virus in the etiological structure of tick-borne encephalitis in the Primorsky Kray. Vopr. Virusol. 173–176 (1980).
Kakoullis, L. et al. Powassan virus infections: a systematic review of published cases. Trop. Med. Infect. Dis. 8, 508 (2023).
Powassan Virus: Historic Data (2004-2022): CDC. https://www.cdc.gov/powassan/statistics-data/historic-data.html (2023).
Nofchissey, R. A. et al. Seroprevalence of Powassan virus in New England deer, 1979-2010. Am. J. Trop. Med. Hyg. 88, 1159–1162 (2013).
PubMed PubMed Central Google Scholar
Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of ixodes scapularis and ixodes pacificus (Acari: Ixodidae) in the Continental United States. J. Med. Entomol. 53, 349–386 (2016).
Campbell, O. & Krause, P. J. The emergence of human Powassan virus infection in North America. Ticks Tick Borne Dis. 11, 101540 (2020).
Dennis, D. T., Nekomoto, T. S., Victor, J. C., Paul, W. S. & Piesman, J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J. Med. Entomol. 35, 629–638 (1998).
Alkishe, A. & Peterson, A. T. Potential geographic distribution of Ixodes cookei, the vector of Powassan virus. J. Vector Ecol. 46, 155–162 (2021).
Ogden, N. H. et al. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 122, 631–638 (2014).
PubMed PubMed Central Google Scholar
VanBlargan, L. A. et al. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep. 25, 3382–92.e3 (2018).
CAS PubMed PubMed Central Google Scholar
Choi, H. et al. A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl. Trop. Dis. 14, e0008788 (2020).
CAS PubMed PubMed Central Google Scholar
Malonis, R. J. et al. A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathog. 18, e1010573 (2022).
CAS PubMed PubMed Central Google Scholar
Cheung, A. M. et al. Characterization of live-attenuated Powassan virus vaccine candidates identifies an efficacious prime-boost strategy for mitigating Powassan virus disease in a murine model. Vaccines 11, 612 (2023).
Cimica, V. et al. A virus-like particle-based vaccine candidate against the tick-borne Powassan virus induces neutralizing antibodies in a mouse model. Pathogens 10, 680 (2021).
Wang, Y., Griffiths, A., Brackney, D. E. & Verardi, P. H. Generation of multiple arbovirus-like particles using a rapid recombinant vaccinia virus expression platform. Pathogens 11, 1505 (2022).
Stone, E. T. et al. Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Rep. 38, 110388 (2022).
CAS PubMed PubMed Central Google Scholar
Dussupt, V. et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat. Med. 26, 228–235 (2020).
CAS PubMed PubMed Central Google Scholar
Gallichotte, E. N. et al. A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. mBio 6, e01461–15 (2015).
CAS PubMed PubMed Central Google Scholar
Wong, S. H. et al. Virus-like particle systems for vaccine development against viruses in the Flaviviridae family. Vaccines 7, 123 (2019).
Grgacic, E. V. & Anderson, D. A. Virus-like particles: passport to immune recognition. Methods 40, 60–65 (2006).
CAS PubMed PubMed Central Google Scholar
Krol, E., Brzuska, G. & Szewczyk, B. Production and biomedical application of flavivirus-like particles. Trends Biotechnol. 37, 1202–1216 (2019).
Sevvana, M. & Kuhn, R. J. Mapping the diverse structural landscape of the flavivirus antibody repertoire. Curr. Opin. Virol. 45, 51–64 (2020).
CAS PubMed PubMed Central Google Scholar
Boigard, H. et al. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis. 11, e0005608 (2017).
PubMed PubMed Central Google Scholar
Fan, Y. C., Chiu, H. C., Chen, L. K., Chang, G. J. & Chiou, S. S. Formalin inactivation of Japanese encephalitis virus vaccine alters the antigenicity and immunogenicity of a neutralization epitope in envelope protein domain III. PLoS Negl. Trop. Dis. 9, e0004167 (2015).
PubMed PubMed Central Google Scholar
Lo-Man, R. et al. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune response without adjuvant. Eur. J. Immunol. 28, 1401–1407 (1998).
Bachmann, M. F. et al. Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur. J. Immunol. 26, 2595–2600 (1996).
Moron, G., Rueda, P., Casal, I. & Leclerc, C. CD8alpha- CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8alpha and CD205 molecules. J. Exp. Med. 195, 1233–1245 (2002).
CAS PubMed PubMed Central Google Scholar
Zimna, M. et al. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antivir. Res 209, 105511 (2023).
Tang, J. et al. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol. Sin. 38, 767–777 (2023).
CAS PubMed PubMed Central Google Scholar
Kushnir, N., Streatfield, S. J. & Yusibov, V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31, 58–83 (2012).
CAS PubMed PubMed Central Google Scholar
Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).
Jain, N. K. et al. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv. Drug Deliv. Rev. 93, 42–55 (2015).
Zhao, T. et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023).
CAS PubMed PubMed Central Google Scholar
Gatt, Z., Gunes, U., Raponi, A., da Rosa, L. C. & Brewer, J. M. Review: unravelling the role of DNA sensing in alum adjuvant activity. Discov. Immunol. 2, kyac012 (2023).
Comments (0)