The TLR7/8 agonist INI-4001 enhances the immunogenicity of a Powassan virus-like-particle vaccine

Ebel, G. D. Update on Powassan virus: emergence of a North American tick-borne flavivirus. Annu Rev. Entomol. 55, 95–110 (2010).

CAS  PubMed  Google Scholar 

Leonova, G. N. et al. Characterization of Powassan viruses from Far Eastern Russia. Arch. Virol. 154, 811–820 (2009).

CAS  PubMed  Google Scholar 

Hermance, M. E. & Thangamani, S. Powassan virus: an emerging arbovirus of public health concern in North America. Vector Borne Zoonotic Dis. 17, 453–462 (2017).

PubMed  PubMed Central  Google Scholar 

McLean, D. M. & Larke, R. P. Powassan and Silverwater viruses: ecology of two Ontario arboviruses. Can. Med. Assoc. J. 88, 182–185 (1963).

CAS  PubMed  PubMed Central  Google Scholar 

McLean, D. M., Best, J. M., Mahalingam, S., Chernesky, M. A. & Wilson, W. E. Powassan virus: summer infection cycle, 1964. Can. Med. Assoc. J. 91, 1360–1362 (1964).

CAS  PubMed  PubMed Central  Google Scholar 

McLean, D. M. et al. Powassan virus: persistence of virus activity during 1966. Can. Med. Assoc. J. 96, 660–664 (1967).

CAS  PubMed  PubMed Central  Google Scholar 

Telford, S. R. et al. A new tick-borne encephalitis-like virus infecting New England deer ticks, ixodes dammini. Emerg. Infect. Dis. 3, 165–170 (1997).

PubMed  PubMed Central  Google Scholar 

Ebel, G. D., Campbell, E. N., Goethert, H. K., Spielman, A. & Telford, S. R. 3rd Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am. J. Trop. Med. Hyg. 63, 36–42 (2000).

CAS  PubMed  Google Scholar 

Artsob, H. Powassan encephalitis. In The Arboviruses: Epidemiology and Ecology, Vol. 2 (ed. Monath, T.) 29–49 (CRC Press, Boca Raton, FL, 1989).

Leonova, G. N., Isachkova, L. M., Baranov, N. I. & Krugliak, S. P. Role of Powassan virus in the etiological structure of tick-borne encephalitis in the Primorsky Kray. Vopr. Virusol. 173–176 (1980).

Kakoullis, L. et al. Powassan virus infections: a systematic review of published cases. Trop. Med. Infect. Dis. 8, 508 (2023).

Powassan Virus: Historic Data (2004-2022): CDC. https://www.cdc.gov/powassan/statistics-data/historic-data.html (2023).

Nofchissey, R. A. et al. Seroprevalence of Powassan virus in New England deer, 1979-2010. Am. J. Trop. Med. Hyg. 88, 1159–1162 (2013).

PubMed  PubMed Central  Google Scholar 

Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of ixodes scapularis and ixodes pacificus (Acari: Ixodidae) in the Continental United States. J. Med. Entomol. 53, 349–386 (2016).

PubMed  Google Scholar 

Campbell, O. & Krause, P. J. The emergence of human Powassan virus infection in North America. Ticks Tick Borne Dis. 11, 101540 (2020).

PubMed  Google Scholar 

Dennis, D. T., Nekomoto, T. S., Victor, J. C., Paul, W. S. & Piesman, J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J. Med. Entomol. 35, 629–638 (1998).

CAS  PubMed  Google Scholar 

Alkishe, A. & Peterson, A. T. Potential geographic distribution of Ixodes cookei, the vector of Powassan virus. J. Vector Ecol. 46, 155–162 (2021).

PubMed  Google Scholar 

Ogden, N. H. et al. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 122, 631–638 (2014).

PubMed  PubMed Central  Google Scholar 

VanBlargan, L. A. et al. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep. 25, 3382–92.e3 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Choi, H. et al. A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl. Trop. Dis. 14, e0008788 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Malonis, R. J. et al. A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathog. 18, e1010573 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Cheung, A. M. et al. Characterization of live-attenuated Powassan virus vaccine candidates identifies an efficacious prime-boost strategy for mitigating Powassan virus disease in a murine model. Vaccines 11, 612 (2023).

Cimica, V. et al. A virus-like particle-based vaccine candidate against the tick-borne Powassan virus induces neutralizing antibodies in a mouse model. Pathogens 10, 680 (2021).

Wang, Y., Griffiths, A., Brackney, D. E. & Verardi, P. H. Generation of multiple arbovirus-like particles using a rapid recombinant vaccinia virus expression platform. Pathogens 11, 1505 (2022).

Stone, E. T. et al. Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Rep. 38, 110388 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Dussupt, V. et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat. Med. 26, 228–235 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Gallichotte, E. N. et al. A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. mBio 6, e01461–15 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Wong, S. H. et al. Virus-like particle systems for vaccine development against viruses in the Flaviviridae family. Vaccines 7, 123 (2019).

Grgacic, E. V. & Anderson, D. A. Virus-like particles: passport to immune recognition. Methods 40, 60–65 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Krol, E., Brzuska, G. & Szewczyk, B. Production and biomedical application of flavivirus-like particles. Trends Biotechnol. 37, 1202–1216 (2019).

CAS  PubMed  Google Scholar 

Sevvana, M. & Kuhn, R. J. Mapping the diverse structural landscape of the flavivirus antibody repertoire. Curr. Opin. Virol. 45, 51–64 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Boigard, H. et al. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis. 11, e0005608 (2017).

PubMed  PubMed Central  Google Scholar 

Fan, Y. C., Chiu, H. C., Chen, L. K., Chang, G. J. & Chiou, S. S. Formalin inactivation of Japanese encephalitis virus vaccine alters the antigenicity and immunogenicity of a neutralization epitope in envelope protein domain III. PLoS Negl. Trop. Dis. 9, e0004167 (2015).

PubMed  PubMed Central  Google Scholar 

Lo-Man, R. et al. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune response without adjuvant. Eur. J. Immunol. 28, 1401–1407 (1998).

CAS  PubMed  Google Scholar 

Bachmann, M. F. et al. Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur. J. Immunol. 26, 2595–2600 (1996).

CAS  PubMed  Google Scholar 

Moron, G., Rueda, P., Casal, I. & Leclerc, C. CD8alpha- CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8alpha and CD205 molecules. J. Exp. Med. 195, 1233–1245 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Zimna, M. et al. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antivir. Res 209, 105511 (2023).

CAS  PubMed  Google Scholar 

Tang, J. et al. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol. Sin. 38, 767–777 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Kushnir, N., Streatfield, S. J. & Yusibov, V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31, 58–83 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).

CAS  PubMed  Google Scholar 

Jain, N. K. et al. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv. Drug Deliv. Rev. 93, 42–55 (2015).

CAS  PubMed  Google Scholar 

Zhao, T. et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Gatt, Z., Gunes, U., Raponi, A., da Rosa, L. C. & Brewer, J. M. Review: unravelling the role of DNA sensing in alum adjuvant activity. Discov. Immunol. 2, kyac012 (2023).

PubMed  Google Scholar 

Comments (0)

No login
gif