Semaphorin 3A protects against thoracic aortic aneurysm dissection by suppressing aortic angiogenesis

Summers KM, Xu D, West JA, McGill JJ, Galbraith A, Whight CM, Brocque SL, Nataatmadja M, Kong LK, Dondey J et al (2004) An integrated approach to management of Marfan syndrome caused by an FBN1 exon 18 mutation in an Australian aboriginal family. Clin Genet 65(1):66–69

Article  PubMed  Google Scholar 

Senser EM, Misra S, Henkin S (2021) Thoracic aortic aneurysm: a clinical review. Cardiol Clin 39(4):505–515

Article  PubMed  Google Scholar 

Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ (2024) Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 119(3):371–395

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Gao P, Li F, Du J (2022) Insights on aortic aneurysm and dissection: role of the extracellular environment in vascular homeostasis. J Mol Cell Cardiol 171:90–101

Article  PubMed  Google Scholar 

Skotsimara G, Antonopoulos A, Oikonomou E, Papastamos C, Siasos G, Tousoulis D (2022) Aortic wall inflammation in the pathogenesis, diagnosis and treatment of aortic aneurysms. Inflammation 45(3):965–976

Article  PubMed  Google Scholar 

Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR (2024) Animal models, pathogenesis, and potential treatment of thoracic aortic aneurysm. Int J Mol Sci 25(2)

Kessler K, Borges LF, Ho-Tin-Noé B, Jondeau G, Michel JB, Vranckx R (2014) Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovasc Res 104(1):147–159

Article  PubMed  Google Scholar 

Del Porto F, di Gioia C, Tritapepe L, Ferri L, Leopizzi M, Nofroni I, De Santis V, Della Rocca C, Mitterhofer AP, Bruno G et al (2014) The multitasking role of macrophages in Stanford type A acute aortic dissection. Cardiology 127(2):123–129

Article  PubMed  Google Scholar 

Jia Y, Li D, Yu J, Jiang W, Liu Y, Li F, Zeng R, Wan Z, Liao X (2023) Angiogenesis in aortic aneurysm and dissection: a literature review. Rev Cardiovasc Med 24(8):223

Article  PubMed  PubMed Central  Google Scholar 

Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

Article  PubMed  Google Scholar 

Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

Article  PubMed  Google Scholar 

Ahmad A, Nawaz MI (2022) Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem 123(12):1938–1965

Article  PubMed  Google Scholar 

Vijaynagar B, Bown MJ, Sayers RD, Choke E (2013) Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. Eur J Clin Invest 43(7):758–765

Article  PubMed  Google Scholar 

Li J, Krishna SM, Golledge J (2016) The potential role of Kallistatin in the development of abdominal aortic aneurysm. Int J Mol Sci 17(8)

Xu B, Iida Y, Glover KJ, Ge Y, Wang Y, Xuan H, Hu X, Tanaka H, Wang W, Fujimura N et al (2019) Inhibition of VEGF (Vascular endothelial growth Factor)-A or its receptor activity suppresses experimental aneurysm progression in the aortic elastase infusion model. Arterioscler Thromb Vasc Biol 39(8):1652–1666

Article  PubMed  PubMed Central  Google Scholar 

Formiga MN, Fanelli MF (2015) Aortic dissection during antiangiogenic therapy with sunitinib. a case report. Sao Paulo Med J = Revista Paulista De Med 133(3):275–277

Article  Google Scholar 

Patel S, Dushenkov A, Jungsuwadee P, Krishnaswami A, Barac A (2020) Team-Based approach to management of hypertension associated with angiogenesis inhibitors. J Cardiovasc Transl Res 13(3):463–477

Article  PubMed  Google Scholar 

Lopes-Coelho F, Martins F, Pereira SA, Serpa J (2021) Anti-Angiogenic therapy: current challenges and future perspectives. Int J Mol Sci 22(7)

Camarda N, Travers R, Yang VK, London C, Jaffe IZ (2022) VEGF receptor Inhibitor-Induced hypertension: emerging mechanisms and clinical implications. Curr Oncol Rep 24(4):463–474

Article  PubMed  PubMed Central  Google Scholar 

Ribatti D, Guidolin D (2022) Morphogenesis of vascular and neuronal networks and the relationships between their remodeling processes. Brain Res Bull 186:62–69

Article  PubMed  Google Scholar 

Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H (2021) Class-3 semaphorins: potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 137:111329

Article  PubMed  Google Scholar 

Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K (2015) Cardiac innervation and sudden cardiac death. Circ Res 116(12):2005–2019

Article  PubMed  PubMed Central  Google Scholar 

Zhipeng H, Zhiwei W, Lilei Y, Hao Z, Hongbing W, Zongli R, Hao C, Xiaoping H (2014) Sympathetic hyperactivity and aortic sympathetic nerve sprouting in patients with thoracic aortic dissection. Ann Vasc Surg 28(5):1243–1248

Article  PubMed  Google Scholar 

Wu LF, Zhou Y, Wang DP, Zhang JJ, Zheng ZF, Guo J, Shen J, Shi JY, Liu QH, Wang XN et al (2024) Nerve growth factor (Ngf) gene-driven semaphorin 3a (Sema3a) expression exacerbates thoracic aortic aneurysm dissection in mice. J Hypertens 42(5):816–827

Article  PubMed  Google Scholar 

Yu Y, Huang X, Liang C, Zhang P (2023) Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol 957:176007

Article  PubMed  Google Scholar 

Toubi E, Vadasz Z (2020) Semaphorin3A is a promising therapeutic tool for bronchial asthma. Allergy 75(2):481–483

Article  PubMed  Google Scholar 

Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M (2023) Retinopathy of prematurity: a review of pathophysiology and signaling pathways. Surv Ophthalmol 68(2):175–210

Article  PubMed  Google Scholar 

Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee JK, Matsumura K, Tomita Y, Miyoshi S et al (2007) Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13(5):604–612

Article  PubMed  Google Scholar 

Bouvrée K, Brunet I, Del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V et al (2012) Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circul Res 111(4):437–445

Article  Google Scholar 

Ortega R, Collado A, Selles F, Gonzalez-Navarro H, Sanz MJ, Real JT, Piqueras L (2019) SGLT-2 (Sodium-Glucose cotransporter 2) Inhibition reduces Ang II (Angiotensin II)-Induced dissecting abdominal aortic aneurysm in ApoE (Apolipoprotein E) knockout mice. Arterioscler Thromb Vasc Biol 39(8):1614–1628

Article  PubMed  Google Scholar 

Daugherty A, Manning MW, Cassis LA (2001) Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 134(4):865–870

Article  PubMed  PubMed Central  Google Scholar 

Zhang WM, Liu Y, Li TT, Piao CM, Liu O, Liu JL, Qi YF, Jia LX, Du J (2016) Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection. J Mol Cell Cardiol 99:76–86

Article  PubMed  Google Scholar 

Golovina VA, Blaustein MP (2006) Preparation of primary cultured mesenteric artery smooth muscle cells for fluorescent imaging and physiological studies. Nat Protoc 1(6):2681–2687

Article  PubMed  Google Scholar 

Jia Y, Wang Q, Liang M, Huang K (2022) KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation. J Translational Med 20(1):627

Article  Google Scholar 

Dinesh NEH, Reinhardt DP (2019) Inflammation in thoracic aortic aneurysms. Herz 44(2):138–146

Article  PubMed  Google Scholar 

Wang X, Khalil RA (2018) Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol (San Diego Calif) 81:241–330

Google Scholar 

Li X, Fang Q, Tian X, Wang X, Ao Q, Hou W, Tong H, Fan J, Bai S (2017) Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol Med Rep 16(4):4455–4462

Article  PubMed  PubMed Central  Google Scholar 

Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, Fujisawa H, Strittmatter SM (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99(1):59–69

Article 

Comments (0)

No login
gif