Proteoglycans and glycosaminoglycans: critical regulators in angiogenesis, vasculogenesis, and vascularized tissue engineering

Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS (2019) Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J Tissue Eng Regen Med 13(10):1815–1829. https://doi.org/10.1002/term.2932

Article  CAS  PubMed  Google Scholar 

Fu J, Wang D (2018) In situ organ-specific vascularization in tissue engineering. Trends Biotechnol 36(8):834–849. https://doi.org/10.1016/j.tibtech.2018.02.012

Article  CAS  PubMed  Google Scholar 

Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brezillon S, Gotte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV (2018) Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 118(18):9152–9232. https://doi.org/10.1021/acs.chemrev.8b00354

Article  CAS  PubMed  Google Scholar 

Chen J, Sun T, Lin B, Wu B, Wu J (2024) The essential role of proteoglycans and glycosaminoglycans in odontogenesis. J Dent Res 103(4):345–358. https://doi.org/10.1177/00220345231224228

Article  CAS  PubMed  Google Scholar 

Chen J, Sun T, You Y, Wu B, Wang X, Wu J (2021) Proteoglycans and glycosaminoglycans in stem cell homeostasis and bone tissue regeneration. Front Cell Dev Biol 9:760532. https://doi.org/10.3389/fcell.2021.760532

Article  PubMed  PubMed Central  Google Scholar 

Zhao P, Liu X, Zhang X, Wang L, Su H, Wang L, He N, Zhang D, Li Z, Kang H, Sun A, Chen Z, Zhou L, Wang M, Zhang Y, Deng X, Fan Y (2021) Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. Lab Chip 21(2):421–434. https://doi.org/10.1039/d0lc00493f

Article  CAS  PubMed  Google Scholar 

Vempati P, Popel AS, Mac GF (2014) Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 25(1):1–19. https://doi.org/10.1016/j.cytogfr.2013.11.002

Article  CAS  PubMed  Google Scholar 

Nemashkalova EL, Shevelyova MP, Machulin AV, Lykoshin DD, Esipov RS, Deryusheva EI (2023) Heparin-induced changes of vascular endothelial growth factor (VEGF(165)) structure. Biomolecules 13(1):98. https://doi.org/10.3390/biom13010098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kastana P, Choleva E, Poimenidi E, Karamanos N, Sugahara K, Papadimitriou E (2019) Insight into the role of chondroitin sulfate E in angiogenesis. FEBS J 286(15):2921–2936. https://doi.org/10.1111/febs.14830

Article  CAS  PubMed  Google Scholar 

Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, Savani RC, Kumar S (2007) Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 26(1):58–68

Article  CAS  PubMed  Google Scholar 

Valachová K, Šoltés L (2021) Hyaluronan as a prominent biomolecule with numerous applications in medicine. Int J Mol Sci 22(13):7077. https://doi.org/10.3390/ijms22137077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravikumar M, Smith RAA, Nurcombe V, Cool SM (2020) Heparan sulfate proteoglycans: key mediators of stem cell function. Front Cell Dev Biol 8:581213. https://doi.org/10.3389/fcell.2020.581213

Article  PubMed  PubMed Central  Google Scholar 

Basu A, Patel NG, Nicholson ED, Weiss RJ (2022) Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 322(5):C849–C864. https://doi.org/10.1152/ajpcell.00085.2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noborn F, Nilsson J, Larson G (2022) Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 111:289–306. https://doi.org/10.1016/j.matbio.2022.07.002

Article  CAS  PubMed  Google Scholar 

Chen J, Sun T, You Y, Lin B, Wu B, Wu J (2023) Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genomics 24(1):163. https://doi.org/10.1186/s12864-023-09140-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ida-Yonemochi H, Takeuchi K, Ohshima H (2022) Role of chondroitin sulfate in the developmental and healing process of the dental pulp in mice. Cell Tissue Res 388(1):133–148. https://doi.org/10.1007/s00441-022-03575-3

Article  CAS  PubMed  Google Scholar 

El Masri R, Seffouh A, Lortat-Jacob H, Vives RR (2017) The “in and out” of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate. Glycoconj J 34(3):285–298. https://doi.org/10.1007/s10719-016-9736-5

Article  CAS  PubMed  Google Scholar 

Galindo LT, Mundim MTVV, Pinto AS, Chiarantin GMD, Almeida MES, Lamers ML, Horwitz AR, Santos MF, Porcionatto M (2017) Chondroitin Sulfate impairs neural stem cell migration through rock activation. Mol Neurobiol 55(4):3185–3195. https://doi.org/10.1007/s12035-017-0565-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikami T, Kitagawa H (2017) Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 34(6):725–735. https://doi.org/10.1007/s10719-016-9732-9

Article  CAS  PubMed  Google Scholar 

Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahas-Scocate AC (2019) Proteoglycans and dental biology: the first review. Carbohydr Polym 225:115199. https://doi.org/10.1016/j.carbpol.2019.115199

Article  CAS  PubMed  Google Scholar 

Morla S (2019) Glycosaminoglycans and glycosaminoglycan mimetics in cancer and inflammation. Int J Mol Sci 20(8):1963. https://doi.org/10.3390/ijms20081963

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gubbiotti MA, Buraschi S, Kapoor A, Iozzo RV (2020) Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin Cancer Biol 62:1–8. https://doi.org/10.1016/j.semcancer.2019.05.003

Article  CAS  PubMed  Google Scholar 

Cambier S, Gouwy M, Proost P (2023) The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 20(3):217–251. https://doi.org/10.1038/s41423-023-00974-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie C, Schaefer L, Iozzo RV (2023) Global impact of proteoglycan science on human diseases. iScience 26(11):108095. https://doi.org/10.1016/j.isci.2023.108095

Article  PubMed  PubMed Central  Google Scholar 

Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J (2004) Control of tissue homeostasis by the extracellular matrix: synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 94(1):510–531

Article  Google Scholar 

Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernandez-Perez J, Moroni L (2021) Glycosaminoglycans: from vascular physiology to tissue engineering applications. Front Chem 9:680836. https://doi.org/10.3389/fchem.2021.680836

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274(16):10816–10822

Article  CAS  PubMed 

Comments (0)

No login
gif