Endothelial GTPBP3 directs developmental angiogenesis and neovascularization after limb ischemia via the mtROS/HRl/ATF4/mTORC1 axis

Eelen G, de Zeeuw P, Simons M, Carmeliet P (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116:1231–1244. https://doi.org/10.1161/circresaha.116.302855

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goveia J, Stapor P, Carmeliet P (2014) Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med 6:1105–1120. https://doi.org/10.15252/emmm.201404156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Sun X, Carmeliet P (2019) Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 30:414–433. https://doi.org/10.1016/j.cmet.2019.08.011

Article  CAS  PubMed  Google Scholar 

De Bock K et al (2013) Role of PFKFB3-driven Glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

Article  CAS  PubMed  Google Scholar 

Du W, Ren L, Hamblin MH, Fan Y (2021) Endothelial cell glucose metabolism and angiogenesis. Biomedicines 9:147. https://doi.org/10.3390/biomedicines9020147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273:156–165. https://doi.org/10.1111/joim.12016

Article  CAS  PubMed  Google Scholar 

Schoors S et al (2014) Partial and transient reduction of Glycolysis by PFKFB3 Blockade reduces pathological angiogenesis. Cell Metab 19:37–48. https://doi.org/10.1016/j.cmet.2013.11.008

Article  CAS  PubMed  Google Scholar 

Schiffmann LM et al (2020) Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat Commun 11:3653. https://doi.org/10.1038/s41467-020-17472-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diebold LP et al (2019) Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab 1:158–171. https://doi.org/10.1038/s42255-018-0011-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herkenne S et al (2020) Developmental and tumor angiogenesis requires the Mitochondria-Shaping protein Opa1. Cell Metab 31:987–1003..e1008

Article  CAS  PubMed  Google Scholar 

Groschner LN, Waldeck-Weiermair M, Malli R, Graier WF (2012) Endothelial mitochondria–less respiration, more integration. Pflugers Arch 464:63–76. https://doi.org/10.1007/s00424-012-1085-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu C et al (2021) Nox2 impairs VEGF-A-induced angiogenesis in placenta via mitochondrial ROS-STAT3 pathway. Redox Biol 45:102051. https://doi.org/10.1016/j.redox.2021.102051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garbincius JF, Elrod JW (2022) Mitochondrial calcium exchange in physiology and disease. Physiol Rev 102:893–992. https://doi.org/10.1152/physrev.00041.2020

Article  CAS  PubMed  Google Scholar 

Asano K et al (2018) Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res 46:1565–1583. https://doi.org/10.1093/nar/gky068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopajtich R et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95:708–720. https://doi.org/10.1016/j.ajhg.2014.10.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D et al (2019) Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 47:5341–5355. https://doi.org/10.1093/nar/gkz218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Zamora A et al (2015) Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-Mediated adaptive responses involving complex I assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier. PLoS ONE 10:e0144273. https://doi.org/10.1371/journal.pone.0144273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boutoual R et al (2018) Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIF-PPARγ-UCP2-AMPK axis. Sci Rep 8:1163. https://doi.org/10.1038/s41598-018-19587-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooke JP, Losordo DW (2015) Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 116:1561–1578. https://doi.org/10.1161/circresaha.115.303565

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kisanuki YY et al (2001) Tie2-Cre Transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242. https://doi.org/10.1006/dbio.2000.0106

Article  CAS  PubMed  Google Scholar 

Constien R et al (2001) Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30:36–44. https://doi.org/10.1002/gene.1030

Article  CAS  PubMed  Google Scholar 

Tang Y, Harrington A, Yang X, Friesel RE, Liaw L (2010) The contribution of the Tie2 + lineage to primitive and definitive hematopoietic cells. Genesis 48:563–567. https://doi.org/10.1002/dvg.20654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinberg SE et al (2019) Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565:495–499. https://doi.org/10.1038/s41586-018-0846-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertaux A et al (2018) Mitochondrial OXPHOS influences immune cell fate: lessons from hematopoietic AIF-deficient and NDUFS4-deficient mouse models. Cell Death Dis 9:581. https://doi.org/10.1038/s41419-018-0583-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JJ et al (2020) Systematic interrogation of angiogenesis in the ischemic mouse Hind limb: vulnerabilities and quality assurance. Arterioscler Thromb Vasc Biol 40:2454–2467. https://doi.org/10.1161/atvbaha.120.315028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. https://doi.org/10.1038/nature10144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625.

Comments (0)

No login
gif