Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820
Raha O et al (2023) Advances in mechanical thrombectomy for acute ischaemic stroke. BMJ Med 2(1):e000407
Article PubMed PubMed Central Google Scholar
Minnerup J et al (2016) Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: A prospective observational study. Stroke 47(6):1584–1592
Article CAS PubMed Google Scholar
Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936
Article CAS PubMed Google Scholar
Wang L et al (2021) Neurovascular unit: a critical role in ischemic stroke. CNS Neurosci Ther 27(1):7–16
Article CAS PubMed PubMed Central Google Scholar
Tiedt S et al (2022) The neurovascular unit and systemic biology in stroke-implications for translation and treatment. Nat Rev Neurol 18(10):597–612
Trimm E, Red-Horse K (2023) Vascular endothelial cell development and diversity. Nat Rev Cardiol 20(3):197–210
Pisani F et al (2022) Role of pericytes in blood-brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 13(7):582
Article CAS PubMed PubMed Central Google Scholar
Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561
Article CAS PubMed Google Scholar
Bell RD et al (2023) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 111(19):3131–3132
Article CAS PubMed PubMed Central Google Scholar
Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215
Article CAS PubMed Google Scholar
Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268
Article CAS PubMed Google Scholar
Kang TY et al (2019) Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci U S A 116(47):23551–23561
Article CAS PubMed PubMed Central Google Scholar
Eilken HM et al (2017) Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun 8(1):1574
Article PubMed PubMed Central Google Scholar
Whitehead B, Karelina K, Weil ZM (2023) Pericyte dysfunction is a key mediator of the risk of cerebral ischemia. J Neurosci Res 101(12):1840–1848
Article CAS PubMed Google Scholar
Cai W et al (2017) Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res 8(2):107–121
Article CAS PubMed Google Scholar
Dalkara T (2019) Pericytes: a novel target to improve success of recanalization therapies. Stroke 50(10):2985–2991
Hu S et al (2023) Targeting pericytes for functional recovery in ischemic stroke. Neuromolecular Med 25(4):457–470
Article CAS PubMed Google Scholar
Cao L et al (2021) Pericytes for therapeutic approaches to ischemic stroke. Front Neurosci 15:629297
Article PubMed PubMed Central Google Scholar
Kamouchi M et al (2012) The possible roles of brain pericytes in brain ischemia and stroke. Cell Mol Neurobiol 32(2):159–165
Sun P et al (2018) MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 38(7):1125–1148
Article CAS PubMed PubMed Central Google Scholar
Sun P, Hamblin MH, Yin KJ (2022) Non-coding RNAs in the regulation of blood-brain barrier functions in central nervous system disorders. Fluids Barriers CNS 19(1):27
Article CAS PubMed PubMed Central Google Scholar
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
Article CAS PubMed Google Scholar
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531
Article CAS PubMed Google Scholar
Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415
Article CAS PubMed Google Scholar
Yang X et al (2017) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48(7):1941–1947
Article CAS PubMed PubMed Central Google Scholar
Sun P et al (2020) Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res 126(8):1040–1057
Article CAS PubMed PubMed Central Google Scholar
Ma F et al (2020) Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke. Sci Signal 13(626):eaay5686
Article CAS PubMed PubMed Central Google Scholar
Sun P et al (2021) Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway. J Cereb Blood Flow Metab 41(10):2725–2742
Article CAS PubMed PubMed Central Google Scholar
Zhou C et al (2022) Genetic deficiency of MicroRNA-15a/16-1 confers resistance to neuropathological damage and cognitive dysfunction in experimental vascular cognitive impairment and dementia. Adv Sci (Weinh) 9(17):e2104986
Zhou C et al (2024) Loss of microRNA-15a/16-1 function promotes neuropathological and functional recovery in experimental traumatic brain injury. JCI Insight 9(12):e178650
Article PubMed PubMed Central Google Scholar
Lepper C, Fan CM (2012) Generating tamoxifen-inducible Cre alleles to investigate myogenesis in mice. Methods Mol Biol 798:297–308
Comments (0)