Genetic deletion of microRNA-15a/16-1 in pericytes stimulates cerebral angiogenesis and promotes functional recovery after ischemic stroke

Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820

Article  Google Scholar 

Raha O et al (2023) Advances in mechanical thrombectomy for acute ischaemic stroke. BMJ Med 2(1):e000407

Article  PubMed  PubMed Central  Google Scholar 

Minnerup J et al (2016) Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: A prospective observational study. Stroke 47(6):1584–1592

Article  CAS  PubMed  Google Scholar 

Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

Article  CAS  PubMed  Google Scholar 

Wang L et al (2021) Neurovascular unit: a critical role in ischemic stroke. CNS Neurosci Ther 27(1):7–16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tiedt S et al (2022) The neurovascular unit and systemic biology in stroke-implications for translation and treatment. Nat Rev Neurol 18(10):597–612

Article  PubMed  Google Scholar 

Trimm E, Red-Horse K (2023) Vascular endothelial cell development and diversity. Nat Rev Cardiol 20(3):197–210

Article  PubMed  Google Scholar 

Pisani F et al (2022) Role of pericytes in blood-brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 13(7):582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armulik A et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

Article  CAS  PubMed  Google Scholar 

Bell RD et al (2023) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 111(19):3131–3132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

Article  CAS  PubMed  Google Scholar 

Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268

Article  CAS  PubMed  Google Scholar 

Kang TY et al (2019) Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci U S A 116(47):23551–23561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eilken HM et al (2017) Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun 8(1):1574

Article  PubMed  PubMed Central  Google Scholar 

Whitehead B, Karelina K, Weil ZM (2023) Pericyte dysfunction is a key mediator of the risk of cerebral ischemia. J Neurosci Res 101(12):1840–1848

Article  CAS  PubMed  Google Scholar 

Cai W et al (2017) Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res 8(2):107–121

Article  CAS  PubMed  Google Scholar 

Dalkara T (2019) Pericytes: a novel target to improve success of recanalization therapies. Stroke 50(10):2985–2991

Article  PubMed  Google Scholar 

Hu S et al (2023) Targeting pericytes for functional recovery in ischemic stroke. Neuromolecular Med 25(4):457–470

Article  CAS  PubMed  Google Scholar 

Cao L et al (2021) Pericytes for therapeutic approaches to ischemic stroke. Front Neurosci 15:629297

Article  PubMed  PubMed Central  Google Scholar 

Kamouchi M et al (2012) The possible roles of brain pericytes in brain ischemia and stroke. Cell Mol Neurobiol 32(2):159–165

Article  PubMed  Google Scholar 

Sun P et al (2018) MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 38(7):1125–1148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun P, Hamblin MH, Yin KJ (2022) Non-coding RNAs in the regulation of blood-brain barrier functions in central nervous system disorders. Fluids Barriers CNS 19(1):27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

Article  CAS  PubMed  Google Scholar 

He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

Article  CAS  PubMed  Google Scholar 

Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

Article  CAS  PubMed  Google Scholar 

Yang X et al (2017) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48(7):1941–1947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun P et al (2020) Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res 126(8):1040–1057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma F et al (2020) Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke. Sci Signal 13(626):eaay5686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun P et al (2021) Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway. J Cereb Blood Flow Metab 41(10):2725–2742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou C et al (2022) Genetic deficiency of MicroRNA-15a/16-1 confers resistance to neuropathological damage and cognitive dysfunction in experimental vascular cognitive impairment and dementia. Adv Sci (Weinh) 9(17):e2104986

Article  PubMed  Google Scholar 

Zhou C et al (2024) Loss of microRNA-15a/16-1 function promotes neuropathological and functional recovery in experimental traumatic brain injury. JCI Insight 9(12):e178650

Article  PubMed  PubMed Central  Google Scholar 

Lepper C, Fan CM (2012) Generating tamoxifen-inducible Cre alleles to investigate myogenesis in mice. Methods Mol Biol 798:297–308

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif