GBD 2019 Diseases and, Collaborators I. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020;21:e51034. https://doi.org/10.15252/embr.202051034.
Article CAS PubMed PubMed Central Google Scholar
Medicine TLR. Patterns of respiratory infections after COVID-19. Lancet Respir Med. 2024;12:1. https://doi.org/10.1016/S2213-2600(23)00472-1.
Wei M, Li S, Lu X, Hu K, Li Z, Li M. Changing respiratory pathogens infection patterns after COVID-19 pandemic in shanghai, China. J Med Virol. 2024;96:e29616. https://doi.org/10.1002/jmv.29616.
Article CAS PubMed Google Scholar
Wang AJ, Zhang H. Alterations of pathogen transmission patterns and attenuated immune stimulation might be the cause of increased adult respiratory infections cases in 2023, results from a multi-center study in Mainland China. Heliyon. 2024;10:e32304. https://doi.org/10.1016/j.heliyon.2024.e32304.
Article CAS PubMed PubMed Central Google Scholar
Chinese National Influenza Center. Available at: https://ivdc.chinacdc.cn/cnic/zyzx/lgzb/, Accessed June 7 2024.
de Abreu Góes VM, Pereira JS, Gularte M, Demoliner, et al. Influenza outbreak during the surge of SARS-CoV-2 Omicron in a metropolitan area from Southern brazil: genomic surveillance. J Med Virol. 2024;96:e29944. https://doi.org/10.1002/jmv.29944.
Deng Z, Li C, Wang Y, et al. Targeted next-generation sequencing for pulmonary infection diagnosis in patients unsuitable for Bronchoalveolar lavage. Front Med (Lausanne). 2023;21:1321515. https://doi.org/10.3389/fmed.2023.1321515.
Li S, Tong J, Liu Y, Shen W, Hu P. Targeted next generation sequencing is comparable with metagenomic next generation sequencing in adults with pneumonia for pathogenic microorganism detection. J Infect. 2022;85:e127–9. https://doi.org/10.1016/j.jinf.2022.08.022.
Article CAS PubMed Google Scholar
Li BH, Li XM. Epidemiological surveillance of acute respiratory infections based on targeted metagenomic next generation sequencing during the flu season after COVID-19 pandemic in Beijing. J Infect. 2024;89:106188. https://doi.org/10.1016/j.jinf.2024.106188.
Article CAS PubMed Google Scholar
Du H, Du Z, Wang L et al. Fulminant myocarditis induced by SARS-CoV-2 infection without severe lung involvement: insights into COVID-19 pathogenesis. J Genet Genomics 51(2024):608–16, https://doi.org/10.1016/j.jgg.2024.02.007
Du H, Li J, Wen H et al. Respiratory pathogen profiles of patients -Beijing municipality, china, November 2023-April 2024. China CDC Wkly 7(2025):113–20, https://doi.org/10.46234/ccdcw2025.018
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Article CAS PubMed PubMed Central Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article CAS PubMed PubMed Central Google Scholar
Yang K, Zhao J, Wang T, et al. Clinical application of targeted next-generation sequencing in pneumonia diagnosis among cancer patients. Front Cell Infect Microbiol. 2025;15:1497198. https://doi.org/10.3389/fcimb.2025.1497198.
Article PubMed PubMed Central Google Scholar
Li Y, Jiang Y, Liu H, et al. Targeted next-generation sequencing for antimicrobial resistance detection in ventilator-associated pneumonia. Front Cell Infect Microbiol. 2025;15:1526087. https://doi.org/10.3389/fcimb.2025.1526087.
Article PubMed PubMed Central Google Scholar
National Health Commission of the People’s Republic of China. Available at: https://www.gov.cn/yaowen/shipin/202311/content_6917232.htm, Accessed June 7 2024.
Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14:93–105. https://doi.org/10.1038/nrmicro.2015.8.
Article CAS PubMed Google Scholar
Chardès V, Mazzolini A, Mora T, Walczak AM. Evolutionary stability of antigenically escaping viruses. Proc Natl Acad Sci USA. 2023;120:e2307712120. https://doi.org/10.1073/pnas.2307712120.
Article CAS PubMed PubMed Central Google Scholar
Gadsby NJ, McHugh MP, Russell CD, et al. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clin Microbiol Infect. 2015;21:e7881–788..e13.
Chung HY, Jian M, Chang C, et al. Novel dual multiplex real-time RT-PCR assays for the rapid detection of SARS-CoV-2, influenza A/B, and respiratory syncytial virus using the BD MAX open system. Emerg Microbes Infect. 2021;10:161–6. https://doi.org/10.1080/22221751.2021.1873073.
Article CAS PubMed PubMed Central Google Scholar
Nyaruaba R, Mwaliko C, Dobnik D, et al. Digital PCR applications in the SARS-CoV-2/COVID-19 era: a roadmap for future outbreaks. Clin Microbiol Rev. 2022;35:e0016821. https://doi.org/10.1128/cmr.00168-21.
Article CAS PubMed Google Scholar
Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–38. https://doi.org/10.1146/annurev-pathmechdis-012418-012751.
Article CAS PubMed Google Scholar
Rolfes MA, Talbot HK, McLean HQ, et al. Household transmission of influenza A viruses in 2021–2022. JAMA. 2023;329:482–9. https://doi.org/10.1001/jama.2023.0064.
Article PubMed PubMed Central Google Scholar
Faico-Filho KS, Barbosa GR, Bellei N. Peculiar H3N2 outbreak in São Paulo during summer and emergence of the Omicron variant. J Infect. 2022;85:90–122. https://doi.org/10.1016/j.jinf.2022.04.007.
Article CAS PubMed PubMed Central Google Scholar
Takashita E, Fujisaki S, Morita H, et al. A community cluster of influenza A(H3N2) virus infection with reduced susceptibility to Baloxavir due to a PA E199G substitution in japan, February to March 2023. Euro Surveill. 2023;28:2300501. https://doi.org/10.2807/1560-7917.ES.2023.28.39.2300501.
Article CAS PubMed PubMed Central Google Scholar
Zhang R, Wen J, Wu K, et al. Influenza-associated neurologic complications in children from an H3N2 outbreak in shenzhen, China during COVID-19 lockdown. Int J Infect Dis. 2023;134:91–4. https://doi.org/10.1016/j.ijid.2023.05.064.
Thompson AJ, Wu N, Canales A, et al. Evolution of human H3N2 influenza virus receptor specificity has substantially expanded the receptor-binding domain site. Cell Host Microbe. 2024;32:261–e2754. https://doi.org/10.1016/j.chom.2024.01.003.
Article CAS PubMed PubMed Central Google Scholar
Bolton MJ, Ort JT, McBride R, et al. Antigenic and virological properties of an H3N2 variant that continues to dominate the 2021-22 Northern hemisphere influenza season. Cell Rep. 2022;39:110897. https://doi.org/10.1016/j.celrep.2022.110897.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Wen Z, Fang Y, et al. Herpesvirus reactivation in respiratory tract is associated with increased mortality of severe pneumonia patients and their respiratory Microbiome dysbiosis. Front Cell Infect Microbiol. 2023;13:1294142. https://doi.org/10.3389/fcimb.2023.1294142.
Article CAS PubMed PubMed Central Google Scholar
Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat Microbiol. 2019;4:1328–36. https://doi.org/10.1038/s41564-019-0447-0.
Comments (0)