M. Janarthanan, S. Gauni, Optimization of underwater visible light communication transmission using multilevel regression modelling. Ocean Eng. 309, 117988 (2024). https://doi.org/10.1016/j.oceaneng.2024.117988
W. Aman, S. Al-Kuwari, M. Muzzammil, M.M.U. Rahman, A. Kumar, Security of underwater and air–water wireless communication: state-of-the-art, challenges and outlook. Ad Hoc Netw. 142, 103114 (2023). https://doi.org/10.1016/j.adhoc.2023.103114
O. Alamu, T.O. Olwal, K. Djouani, Energy harvesting techniques for sustainable underwater wireless communication networks: a review. E-Prime-Adv. Electr. Eng. Electron. Energy 5, 100265 (2023). https://doi.org/10.1016/j.prime.2023.100265
Y. Jiang, X. Xing, The application of artificial intelligence in unmanned underwater vehicle communication systems. Comput. Electr. Eng. 117, 109288 (2024). https://doi.org/10.1016/j.compeleceng.2024.109288
F. Ye, H. Xu, J. Gao, Relay selection in underwater acoustic sensor networks for QoS-based cooperative communication using game theory. Comput. Commun. 219, 104–115 (2024). https://doi.org/10.1016/j.comcom.2024.03.003
W. Aman, S. Al-Kuwari, M. Qaraqe, A novel physical layer authentication mechanism for static and mobile 3D underwater acoustic communication networks. Phys. Commun. 66, 102430 (2024). https://doi.org/10.1016/j.phycom.2024.102430
Institute of Electrical and Electronics Engineers and PPG Institute of Technology, Proceedings of the 5th International Conference on Communication and Electronics Systems (ICCES 2020) : 10–12, June 2020
N. Venu, D. Kumar, M. Laxman Reddy, “Article in High Technology Letters,” 2023. https://doi.org/10.37896/HTL29.10/9519
M. Aman, G. Qiao, M. Muzzammil, Design and analysis of Li-fi underwater wireless communication system, in 2021 OES China Ocean Acoustics, COA 2021, Institute of Electrical and Electronics Engineers Inc., Jul. 2021, pp. 1100–1103. https://doi.org/10.1109/COA50123.2021.9519887
V. V. Nair, N. Sridhar, K. Venkateswaran, Li-Fi based data transmission for underwater communication, 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp. 925–929, Sep. 2021
S. Afifah, J.K. Wei, L. Marlina, S.K. Liaw, P.J. Lee, C.H. Yeh, Performance evaluation of multi-wavelength visible light underwater optical communication. Opt. Lasers Eng. 192, 109026 (2025). https://doi.org/10.1016/j.optlaseng.2025.109026
B.R. Angara, P. Shanmugam, H. Ramachandran, Influence of sea surface waves and bubbles on the performance of underwater-to-air optical wireless communication system. Opt. Laser Technol. 174, 110652 (2024). https://doi.org/10.1016/j.optlastec.2024.110652
M.F. Ali, D.N.K. Jayakody, SIMO-underwater visible light communication (UVLC) system. Comput. Netw. 232, 109750 (2023). https://doi.org/10.1016/j.comnet.2023.109750
Y. Park, H. Lim, Y. Song, Design and implementation of underwater optical wireless communication prototype system supporting automatic beam alignment. ICT Express 10(5), 1034–1042 (2024). https://doi.org/10.1016/j.icte.2024.07.006
A. Kharbouche, H. Ouamna, Z. Madini, Y. Zouine, Performance analysis of a multi-user outdoor visible light communication system using wavelength division multiplexing (WDM) with RZ-OOK and NRZ-OOK modulations for V2X communications. E-Prime-Adv. Electr. Eng. Electron. Energy 11, 100900 (2025). https://doi.org/10.1016/j.prime.2025.100900
K.N.J. George, V.K. Jayasree, An intensity modulation transmission system for under water channel modeling and communication. Proc. Technol. 24, 834–841 (2016). https://doi.org/10.1016/j.protcy.2016.05.120
A.F. Yilmaz, I. Myderrizi, Increasing indoor Li-Fi system efficiency using light reflective materials and lenses. J. Eng. Res. (2024). https://doi.org/10.1016/j.jer.2024.10.014
B. Cui, S. Cai, L. Wang, Z. Zhang, Turbulence-resistant high speed free-space optical communications using MUTC photodiodes. Results Opt. 21, 100836 (2025). https://doi.org/10.1016/j.rio.2025.100836
G.N. Arvanitakis et al., Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photon. J. 12(2), 1–10 (2020). https://doi.org/10.1109/JPHOT.2019.2959656
Article MathSciNet Google Scholar
R. Challapalli, P. Chitra, Investigating MIMO technology in free space optical communication systems for evaluating performance across various environment parameters. Results Eng. (2024). https://doi.org/10.1016/j.rineng.2024.103617
V. V. Nair, N. Sridhar, K. Venkateswaran, Li-Fi based data transmission for underwater communication, in Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021, Institute of Electrical and Electronics Engineers Inc., Jul. 2021, pp. 925–929. https://doi.org/10.1109/ICCES51350.2021.9489200
S. Gupta, D. Roy, S. Bose, V. Dixit, A. Kumar, Illuminating the future: a comprehensive review of visible light communication applications. Opt. Laser Technol. 177, 111182 (2024). https://doi.org/10.1016/j.optlastec.2024.111182
N.R. Krishnamoorthy, A. Gerald, G. Rajalakshmi, D. Marshiana, T.T.M. Delsy, An automated underwater wireless communication system using Li-Fi with IOT support and GPS positioning. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1770/1/012030
A. Kumbhar, S. Hujare, A. Kadam, M. Salgar, A. Bagwan, G. Munde, This work is licensed under a creative commons attribution 4.0 international license underwater communication using Li-Fi technology. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 9, 2321–5526 (2021). https://doi.org/10.17148/IJIREEICE.2021.9625
S. Thorat, Deep water communication using light fidelity (Li-Fi). Int. J. Sci. Res. Publ. 12(11), 110–114 (2022). https://doi.org/10.29322/ijsrp.12.11.2022.p13114
S.S. Narayanan, B.D. Devappa, K. Pawar, S. Jain, A.V.R. Murthy, Implementation of forward error correction for improved performance of free space optical communication channel in adverse atmospheric conditions. Results Opt. 16, 100689 (2024). https://doi.org/10.1016/j.rio.2024.100689
S. Rajbhandari et al., High-speed integrated visible light communication system: device constraints and design considerations. IEEE J. Sel. Areas Commun. 33(9), 1750–1757 (2015). https://doi.org/10.1109/JSAC.2015.2432551
S. Magidi, A. Jabeena, Analysis of multi-pulse position modulation free space optical communication system employing wavelength and time diversity over Malaga turbulence channel. Sci. African 12, e00777 (2021). https://doi.org/10.1016/j.sciaf.2021.e00777
G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (Wiley, 2010)
B. Chatterjee, S. Mandal, Z-domain modeling approach of a multilayer sextuple-coupled micro-ring resonator with 1 × 5 input–output bus waveguides as optical filters. Appl. Opt. 58(28), 7868 (2019). https://doi.org/10.1364/ao.58.007868
A.M. Ibrahimy, B.I. Fadilah, D. Arseno, B. Pamukti, Performance of underwater audio transmission based on underwater visible light communication (UVLC). Eng. Lett. 30(1), 362–368 (2022)
D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, S. Randel, Visible light communications: challenges and possibilities, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC, no. October 2008, 2008, https://doi.org/10.1109/PIMRC.2008.4699964
P. Sikder, M.T. Rahman, A.S.M. Bakibillah, Advancements and challenges of visible light communication in intelligent transportation systems: a comprehensive review. Photonics 12(3), 1–21 (2025). https://doi.org/10.3390/photonics12030225
K. Shaaban, M.H.M. Shamim, K. Abdur-Rouf, Visible light communication for intelligent transportation systems: a review of the latest technologies. J. Traffic Transp. Eng. English Ed. 8(4), 483–492 (2021). https://doi.org/10.1016/j.jtte.2021.04.005
Comments (0)