R. Dubey, D. Gautam, Porous silicon layers prepared by electrochemical etching for application in silicon thin film solar cells. Superlattices Microstruct. 50(3), 269–276 (2011). https://doi.org/10.1016/j.spmi.2011.07.003
D. Halliday et al., Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films. 276(1–2), 299–302 (1996). https://doi.org/10.1016/0040-6090(95)08102-X
D. Ge et al., Formation of macro–meso–microporous multilayer structures. Electrochim. Acta. 88, 141–146 (2013). https://doi.org/10.1016/j.electacta.2012.10.028
G.E. Kotkovskiy et al., The photophysics of porous silicon: technological and biomedical implications. Phys. Chem. Chem. Phys. 14(40), 13890–13902 (2012). https://doi.org/10.1039/C2CP42019H
U.M. Nayef, K.A. Hubeatir, Z.J. Abdulkareem, Characterisation of ( TiO2: 2 have to subscript )nanoparticles on porous silicon for optoelectronics application. Mater. Technol. 31(14), 884–889 (2016). https://doi.org/10.1080/10667857.2015.1132988
A. Jane et al., Porous silicon biosensors on the advance. Trends Biotechnol. 27(4), 230–239 (2009). https://doi.org/10.1021/acs.analchem.8b05028
R. Moretta et al., Porous silicon optical devices: recent advances in biosensing applications. Sensors. 21(4), 1336 (2021). https://doi.org/10.3390/s21041336
R. Dubey, D. Gautam, Porous silicon layers prepared by electrochemical etching for application in silicon thin film solar cells. Superlattices Microstruct. 50(3), 269–276 (2011). https://doi.org/10.1007/s40094-020-00368-3
S.M.A. Aziz, U.M. Nayef, M. Rasheed, Enhancing spectral responsivity of zinc oxide nanoparticles via laser ablation on porous silicon. Plasmonics. 1–11 (2024). https://doi.org/10.1007/s11468-024-02456-5
S. Weiss, M. Haurylau, P.M. Fauchet, Tunable photonic bandgap structures for optical interconnects. Opt. Mater. 27(5), 740–744 (2005). https://doi.org/10.1016/j.optmat.2004.08.007
K.A. Salman, K. Omar, Z. Hassan, The effect of etching time of porous silicon on solar cell performance. Superlattices Microstruct. 50(6), 647–658 (2011). https://doi.org/10.1016/j.spmi.2011.09.006
K. Kulathuraan, K. Mohanraj, B. Natarajan, Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 51–57 (2016). https://doi.org/10.1016/j.saa.2015.07.055
Z.A.A. Hameed, F.A.-H. Mutlak, Au@ Pb Core@ Shell Nanoparticles Produced by Magnetic Field–assisted Two-step Laser Ablation in the Direction of a Highly Efficient Porous Silicon–based Heterojunction Photodetector. Plasmonics,: pp. 1–18., (2024) https://doi.org/10.1007/s11468-024-02573-1
M. Theodoropoulou et al., Transient and ac electrical transport under forward and reverse bias conditions in aluminum/porous silicon∕ p-cSi structures. J. Appl. Phys. 96(12), 7637–7642 (2004). https://doi.org/10.1063/1.1815388
P. Vinod, Specific contact resistance of the porous silicon and silver metal ohmic contact structure. Semicond. Sci. Technol. 20(9), 966 (2005). https://doi.org/10.1088/0268-1242/20/9/014
R.J. White et al., Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 38(2), 481–494 (2009). https://doi.org/10.1039/B802654H
J. Wang, Z. Jia, Metal nanoparticles/porous silicon microcavity enhanced surface plasmon resonance fluorescence for the detection of DNA. Sensors. 18(2), 661 (2018). https://doi.org/10.3390/s18020661
Article ADS MathSciNet Google Scholar
A.B. Dheyab, A.M. Alwan, M.Q. Zayer, Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics. 14(2), 501–509 (2019). https://doi.org/10.1007/s11468-018-0828-x
J. Hwang et al., Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles. Sci. Rep. 6(1), 35565 (2016). https://doi.org/10.1038/srep35565
M.Z. Alhamid, B.S. Hadi, A. Khumaeni, Synthesis of silver nanoparticles using laser ablation method utilizing Nd: YAG laser. in AIP conference proceedings.. AIP Publishing., (2019) https://doi.org/10.1063/1.5141626
M.H. Jasim, U.M. Nayef, H.T. Hussien, Improvement of spectral responsivity of gold nanoparticles via laser ablation at different laser energies deposited on porous silicon. Plasmonics. 19(1), 263–271 (2024). https://doi.org/10.1007/s11468-023-01992-w
N. Kumar, F. Alam, V. Dutta, Deposition of ag and Au–Ag alloy nanoparticle films by spray pyrolysis technique with tuned plasmonic properties. J. Alloys Compd. 585, 312–317 (2014). https://doi.org/10.1016/j.jallcom.2013.09.145
S.R. Ardekani et al., A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter. J. Anal. Appl. Pyrol. 141, 104631 (2019). https://doi.org/10.1016/j.jaap.2019.104631
F.F. Masouleh, N. Das, Application of Metal-Semiconductor-Metal photodetector in High-Speed optical communication. Adv. Opt. Communication. 87 (2014). https://doi.org/10.5772/58997
M.I. Saleem, A.K.K. Kyaw, J. Hur, Infrared photodetectors: recent advances and challenges toward innovation for image sensing applications. Adv. Opt. Mater. 12(33), 2401625 (2024). https://doi.org/10.1002/adom.202401625
Y.H. Khadim, U.M. Nayef, F.A.-H. Mutlak, Synthesis of silver@ gold (core@ shell) nanoparticles deposited on porous silicon for enhanced spectral responsivity. Plasmonics. 19(2), 835–844 (2024). https://doi.org/10.1007/s11468-023-02043-0
H. Wang et al., Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano. 10(12), 10921–10928 (2016). https://doi.org/10.1021/acsnano.6b05535
A. Chetia et al., A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures. Mater. Today Commun. 30, 103224 (2022). https://doi.org/10.1016/j.mtcomm.2022.103224
J. Ren et al., A mesoporous silica film based weak measurement sensor for detection of small molecules. IEEE Sens. J. (2024). https://doi.org/10.1109/JSEN.2024.3490657
S. Wang et al., Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. (2025). https://doi.org/10.1039/D4MH01466A
R. Sánchez-Salcedo, P. Sharma, N.H. Voelcker, Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications (ACS Applied Materials & Interfaces, 2025). https://doi.org/10.1021/acsami.4c18273
R. Kuang et al., Smart photonic wristband for pulse wave monitoring. Opto-Electronic Sci. 3(12). p. 240009-1-240009-16, (2024) https://doi.org/10.29026/oes.2024.240009
R. Singh et al., WaveFlex biosensor: MXene-Immobilized W-shaped Fiber-Based LSPR sensor for highly selective tyramine detection. Opt. Laser Technol. 171, 110357 (2024). https://doi.org/10.1016/j.optlastec.2023.110357
R. Jha, P. Mishra, S. Kumar, Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens. Bioelectron. 254, 116232 (2024). https://doi.org/10.1016/j.bios.2024.116232
A.A. Alqanoo et al., Silver nanowires assisted porous silicon for high photodetector sensitivity using surface plasmonic phenomena. Sens. Actuators A: Phys. 347, 113942 (2022). https://doi.org/10.1016/j.sna.2022.113942
T. Hattori, Past, present, and future of semiconductor cleaning technology. Solid State Phenom. 346, 3–7 (2023). https://doi.org/10.4028/p-iL7C5e
A. Subhan, A.-H.I. Mourad, Y. Al-Douri, Influence of laser process parameters, liquid medium, and external field on the synthesis of colloidal metal nanoparticles using pulsed laser ablation in liquid: a review. Nanomaterials. 12(13), 2144 (2022). https://doi.org/10.3390/nano12132144
M.H. Mahdieh, B. Fattahi, Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence. Appl. Surf. Sci. 329, 47–57 (2015). https://doi.org/10.1016/j.apsusc.2014.12.069
Y. Ishikawa et al., Pulsed laser melting in liquid for crystalline spherical submicrometer particle fabrication–Mechanism, process control, and applications. Prog. Mater. Sci. 131, 101004 (2023). https://doi.org/10.1016/j.pmatsci.2022.101004
S. Joo, D.F. Baldwin, Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology. 21(5), 055204 (2009). https://doi.org/10.1088/0957-4484/21/5/055204
Comments (0)