High-performance porous silicon spectral responsivity enhanced with laser-ablated silver nanoparticles via spray pyrolysis

R. Dubey, D. Gautam, Porous silicon layers prepared by electrochemical etching for application in silicon thin film solar cells. Superlattices Microstruct. 50(3), 269–276 (2011). https://doi.org/10.1016/j.spmi.2011.07.003

Article  ADS  Google Scholar 

D. Halliday et al., Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films. 276(1–2), 299–302 (1996). https://doi.org/10.1016/0040-6090(95)08102-X

Article  ADS  Google Scholar 

D. Ge et al., Formation of macro–meso–microporous multilayer structures. Electrochim. Acta. 88, 141–146 (2013). https://doi.org/10.1016/j.electacta.2012.10.028

Article  Google Scholar 

G.E. Kotkovskiy et al., The photophysics of porous silicon: technological and biomedical implications. Phys. Chem. Chem. Phys. 14(40), 13890–13902 (2012). https://doi.org/10.1039/C2CP42019H

Article  Google Scholar 

U.M. Nayef, K.A. Hubeatir, Z.J. Abdulkareem, Characterisation of ( TiO2: 2 have to subscript )nanoparticles on porous silicon for optoelectronics application. Mater. Technol. 31(14), 884–889 (2016). https://doi.org/10.1080/10667857.2015.1132988

Article  ADS  Google Scholar 

A. Jane et al., Porous silicon biosensors on the advance. Trends Biotechnol. 27(4), 230–239 (2009). https://doi.org/10.1021/acs.analchem.8b05028

Article  Google Scholar 

R. Moretta et al., Porous silicon optical devices: recent advances in biosensing applications. Sensors. 21(4), 1336 (2021). https://doi.org/10.3390/s21041336

Article  ADS  Google Scholar 

R. Dubey, D. Gautam, Porous silicon layers prepared by electrochemical etching for application in silicon thin film solar cells. Superlattices Microstruct. 50(3), 269–276 (2011). https://doi.org/10.1007/s40094-020-00368-3

Article  ADS  Google Scholar 

S.M.A. Aziz, U.M. Nayef, M. Rasheed, Enhancing spectral responsivity of zinc oxide nanoparticles via laser ablation on porous silicon. Plasmonics. 1–11 (2024). https://doi.org/10.1007/s11468-024-02456-5

S. Weiss, M. Haurylau, P.M. Fauchet, Tunable photonic bandgap structures for optical interconnects. Opt. Mater. 27(5), 740–744 (2005). https://doi.org/10.1016/j.optmat.2004.08.007

Article  ADS  Google Scholar 

K.A. Salman, K. Omar, Z. Hassan, The effect of etching time of porous silicon on solar cell performance. Superlattices Microstruct. 50(6), 647–658 (2011). https://doi.org/10.1016/j.spmi.2011.09.006

Article  ADS  Google Scholar 

K. Kulathuraan, K. Mohanraj, B. Natarajan, Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 51–57 (2016). https://doi.org/10.1016/j.saa.2015.07.055

Article  ADS  Google Scholar 

Z.A.A. Hameed, F.A.-H. Mutlak, Au@ Pb Core@ Shell Nanoparticles Produced by Magnetic Field–assisted Two-step Laser Ablation in the Direction of a Highly Efficient Porous Silicon–based Heterojunction Photodetector. Plasmonics,: pp. 1–18., (2024) https://doi.org/10.1007/s11468-024-02573-1

M. Theodoropoulou et al., Transient and ac electrical transport under forward and reverse bias conditions in aluminum/porous silicon∕ p-cSi structures. J. Appl. Phys. 96(12), 7637–7642 (2004). https://doi.org/10.1063/1.1815388

Article  ADS  Google Scholar 

P. Vinod, Specific contact resistance of the porous silicon and silver metal ohmic contact structure. Semicond. Sci. Technol. 20(9), 966 (2005). https://doi.org/10.1088/0268-1242/20/9/014

Article  ADS  Google Scholar 

R.J. White et al., Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 38(2), 481–494 (2009). https://doi.org/10.1039/B802654H

Article  Google Scholar 

J. Wang, Z. Jia, Metal nanoparticles/porous silicon microcavity enhanced surface plasmon resonance fluorescence for the detection of DNA. Sensors. 18(2), 661 (2018). https://doi.org/10.3390/s18020661

Article  ADS  MathSciNet  Google Scholar 

A.B. Dheyab, A.M. Alwan, M.Q. Zayer, Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics. 14(2), 501–509 (2019). https://doi.org/10.1007/s11468-018-0828-x

Article  Google Scholar 

J. Hwang et al., Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles. Sci. Rep. 6(1), 35565 (2016). https://doi.org/10.1038/srep35565

Article  ADS  Google Scholar 

M.Z. Alhamid, B.S. Hadi, A. Khumaeni, Synthesis of silver nanoparticles using laser ablation method utilizing Nd: YAG laser. in AIP conference proceedings.. AIP Publishing., (2019) https://doi.org/10.1063/1.5141626

M.H. Jasim, U.M. Nayef, H.T. Hussien, Improvement of spectral responsivity of gold nanoparticles via laser ablation at different laser energies deposited on porous silicon. Plasmonics. 19(1), 263–271 (2024). https://doi.org/10.1007/s11468-023-01992-w

Article  Google Scholar 

N. Kumar, F. Alam, V. Dutta, Deposition of ag and Au–Ag alloy nanoparticle films by spray pyrolysis technique with tuned plasmonic properties. J. Alloys Compd. 585, 312–317 (2014). https://doi.org/10.1016/j.jallcom.2013.09.145

Article  Google Scholar 

S.R. Ardekani et al., A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter. J. Anal. Appl. Pyrol. 141, 104631 (2019). https://doi.org/10.1016/j.jaap.2019.104631

Article  Google Scholar 

F.F. Masouleh, N. Das, Application of Metal-Semiconductor-Metal photodetector in High-Speed optical communication. Adv. Opt. Communication. 87 (2014). https://doi.org/10.5772/58997

M.I. Saleem, A.K.K. Kyaw, J. Hur, Infrared photodetectors: recent advances and challenges toward innovation for image sensing applications. Adv. Opt. Mater. 12(33), 2401625 (2024). https://doi.org/10.1002/adom.202401625

Article  Google Scholar 

Y.H. Khadim, U.M. Nayef, F.A.-H. Mutlak, Synthesis of silver@ gold (core@ shell) nanoparticles deposited on porous silicon for enhanced spectral responsivity. Plasmonics. 19(2), 835–844 (2024). https://doi.org/10.1007/s11468-023-02043-0

Article  Google Scholar 

H. Wang et al., Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano. 10(12), 10921–10928 (2016). https://doi.org/10.1021/acsnano.6b05535

Article  Google Scholar 

A. Chetia et al., A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures. Mater. Today Commun. 30, 103224 (2022). https://doi.org/10.1016/j.mtcomm.2022.103224

Article  Google Scholar 

J. Ren et al., A mesoporous silica film based weak measurement sensor for detection of small molecules. IEEE Sens. J. (2024). https://doi.org/10.1109/JSEN.2024.3490657

Article  Google Scholar 

S. Wang et al., Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. (2025). https://doi.org/10.1039/D4MH01466A

Article  Google Scholar 

R. Sánchez-Salcedo, P. Sharma, N.H. Voelcker, Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications (ACS Applied Materials & Interfaces, 2025). https://doi.org/10.1021/acsami.4c18273

R. Kuang et al., Smart photonic wristband for pulse wave monitoring. Opto-Electronic Sci. 3(12). p. 240009-1-240009-16, (2024) https://doi.org/10.29026/oes.2024.240009

R. Singh et al., WaveFlex biosensor: MXene-Immobilized W-shaped Fiber-Based LSPR sensor for highly selective tyramine detection. Opt. Laser Technol. 171, 110357 (2024). https://doi.org/10.1016/j.optlastec.2023.110357

Article  Google Scholar 

R. Jha, P. Mishra, S. Kumar, Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens. Bioelectron. 254, 116232 (2024). https://doi.org/10.1016/j.bios.2024.116232

Article  Google Scholar 

A.A. Alqanoo et al., Silver nanowires assisted porous silicon for high photodetector sensitivity using surface plasmonic phenomena. Sens. Actuators A: Phys. 347, 113942 (2022). https://doi.org/10.1016/j.sna.2022.113942

Article  Google Scholar 

T. Hattori, Past, present, and future of semiconductor cleaning technology. Solid State Phenom. 346, 3–7 (2023). https://doi.org/10.4028/p-iL7C5e

Article  Google Scholar 

A. Subhan, A.-H.I. Mourad, Y. Al-Douri, Influence of laser process parameters, liquid medium, and external field on the synthesis of colloidal metal nanoparticles using pulsed laser ablation in liquid: a review. Nanomaterials. 12(13), 2144 (2022). https://doi.org/10.3390/nano12132144

Article  Google Scholar 

M.H. Mahdieh, B. Fattahi, Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence. Appl. Surf. Sci. 329, 47–57 (2015). https://doi.org/10.1016/j.apsusc.2014.12.069

Article  ADS  Google Scholar 

Y. Ishikawa et al., Pulsed laser melting in liquid for crystalline spherical submicrometer particle fabrication–Mechanism, process control, and applications. Prog. Mater. Sci. 131, 101004 (2023). https://doi.org/10.1016/j.pmatsci.2022.101004

Article  Google Scholar 

S. Joo, D.F. Baldwin, Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology. 21(5), 055204 (2009). https://doi.org/10.1088/0957-4484/21/5/055204

Article  ADS  Google Scholar 

Comments (0)

No login
gif