National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart | Photovoltaic Research|NREL. https://www.nrel.gov/pv/cell-efficiency.html (2023).
Y. Raoui, S. Kazim, Y. Galagan, H. Ez-Zahraouy, S. Ahmad, Harnessing the potential of lead-free Sn-Ge based perovskite solar cells by unlocking the recombination channels. Sustain. Energy Fuels 5, 4661–4667 (2021). https://doi.org/10.1039/d1se00687h
G. Pindolia, S.M. Shinde, P.K. Jha, Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Sol. Energy 236, 802–821 (2022)
M. Khalid Hossain, G.F. Ishraque Toki, D.P. Samajdar, M. Mushtaq, M.H.K. Rubel, R. Pandey, J. Madan, M.K.A. Mohammed, M.R. Islam, M.F. Rahman, H. Bencherif, Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega 8(25), 22466–22485 (2023)
T.I. Alanazi, Design and device numerical analysis of lead-free Cs2AgBiBr6 double perovskite solar cell. Crystals 13, 267 (2023). https://doi.org/10.3390/cryst13020267
M. Usman, Q. Yan, Recent advancements in crystalline Pb-free halide double perovskites. Crystals 10, 62 (2020). https://doi.org/10.3390/cryst10020062
Z. Xiao, K.Z. Du, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Intrinsic instability of Cs2 In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc. 139, 6054–6057 (2017)
M.A. Ghebouli, T. Chihi, B. Ghebouli, M. Fatmi, Study of the structural, elastic, electronic and optical properties of lead-free halide double Perovskites Cs2AgBiX6 (X = Br, Cl). Chin. J. Phys. 56, 323–330 (2018)
L. Dong, S. Sun, Z. Deng, W. Li, F. Wei, Y. Qi, Y. Li, X. Li, P. Lu, U. Ramamurty, Elastic properties and thermal expansion of lead-free halide double Cs2AgBiBr6. Comput. Mater. Sci. 141, 49–58 (2018)
M. Nurul Islam, J. Podder, Semiconductor to metallic transition in double halide perovskites Cs2AgBiCl6 through induced pressure: a DFT simulation for optoelectronic and photovoltaic applications. Heliyon 8, e10032 (2022). https://doi.org/10.1016/j.heliyon.2022.e10032
M. Wang, P. Zeng, Z. Wang, M. Liu, Vapor-deposited Cs2AgBiCl6 double perovskite films toward highly selective and stable ultraviolet photodetector. Adv. Sci. 7, 1903662 (2020). https://doi.org/10.1002/advs.201903662
M.S. Shadabroo, H. Abdizadeh, M.R. Golobostanfard, Elpasolite structures based on A2AgBiX6 (A; MA, Cs, X: I, Br): application in double perovskite solar cells. Mater. Sci. Semicond. Process. 125, 105639 (2021). https://doi.org/10.1016/j.mssp.2020.105639
A. Singh, V. Srivastava, S. Singh et al., Optimization of highly efficient inorganic lead-free double perovskite solar cells via SCAPS-1D. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01440-2
H. Absike, N. Baaalla, R. Lamouri, H. Labrim, H. Ez-zahraouy, Optoelectronic and photovoltaic properties of Cs2AgBiX6 (X = Br, Cl, or I) halide double perovskite for solar cells: Insight from density functional theory. In: Special Issue: Potential Energy Solutions (IEEES‐12), vol 46(8), pp. 11053–11064 (2022).
Y. Chrafih, M. Al-Hattab, K. Rahmani, Thermodynamic, optical and morphological studies of the Cs2AgBiX6 double perovskites (X = Br, Cl, or I): Insights from DFT study. J. Alloys Compd. 960, 170650 (2023). https://doi.org/10.1016/j.jallcom.2023.170650
E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl)—new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. (2016). https://doi.org/10.1021/acs.chemmater.5b04231
C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao, The dawn of lead free perovskite solar cell: highly stable double perovskite Cs2AgBiBr 6 film. Adv. Sci. 5(3), 1700759 (2018). https://doi.org/10.1002/advs.201700759
A. Mohandes, M. Moradi, H. Nadgaran, Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Opt. Quant. Electron. 53, 319 (2021). https://doi.org/10.1007/s11082-021-02959-z
G. Volonakis, F. Giustino, Surface properties of lead-free halide double perovskites: possible visible-light photo-catalysts for water splitting. Appl. Phys. Lett. 112, 243901 (2018)
A.J. Kale, R. Chaurasiya, A. Dixit, Lead-free Cs2BB’X6(B-: Ag/Au/Cu, B’-: bi/Sb/Tl and X-: Br/Cl/I) double Perovskites and their potential in energy conversion applications. ACS Appl Energy Mater (2022). https://doi.org/10.1021/acsaem.2c00672
D. Gill, P. Bhumla, M. Kumar, S. Bhattacharya, High-throughput screening to modulate electronic and optical properties of alloyed Cs2AgBiCl6for enhanced solar cell efficiency. J. Phys. Mater. 4, 025005 (2021)
J. Leveillee, G. Volonakis, F. Giustino, Phonon-limited mobility and electronphonon coupling in lead-free halide double Perovskites. J. Phys. Chem. Lett. 12(18), 4474–4482 (2021). https://doi.org/10.1021/acs.jpclett.1c00841hal-03247358
M.N. Tripathi, A. Saha, S. Singh, Structural, elastic, electronic and optical properties of lead-free halide double perovskite Cs2AgBiX6 (X = Cl, Br, and I). Mater. Res. Express 6, 115517 (2019)
S. Thawarkar, S.R. Rondiya, N.Y. Dzade, N. Khupse, S. Jadkar, Experimental and theoretical investigation of the structural and opto-electronic properties of Fe-doped lead-free Cs2AgBiCl6 double perovskite. Chem. Eur. J. 27, 1–11 (2021)
D.J. Kubicki, M. Saski, S. MacPherson, K. Galkowski, J. Lewiski, D. Prochowicz, J.J. Titman, S.D. Stranks, Halide mixing and phase segregation in Cs2AgBiX6 (X=Cl, Br, I) double perovskites from cesium-133 solid-state NMR and optical spectroscopy. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.0c01255
R.L.Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala, S. Sun, W. Li, K.H.L. Zhang, J.L. MacManus-Driscoll, P.D. Bristowe, R.H. Friend, A.K. Cheetham, F. Deschler, Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite. Adv. Mater. Interfaces 5, 1800464 (2018)
A. Menedjhi, N. Bouarissa, S. Saib, M. Boucenna, F. Mezrag, Band structure and optical spectra of double Perovskite Cs2AgBiBr6for solar cells performance. Acta Phys. Pol., A 137, 486–488 (2020). https://doi.org/10.12693/APhysPolA.137.486
S. Ahmed, F. Jannat, M.A. Kaium Khan, M.A. Alim, Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165765
M.K. Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, Md.F. Rahman, H. Bencherif, Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7, 43210–43230 (2022). https://doi.org/10.1021/acsomega.2c05912
M.K. Hossain, A.A. Arnab, R.C. Das, K.M. Hossain, M.H.K. Rubel, Md.F. Rahman, H. Bencherif, M.E. Emetere, M.K.A. Mohammed, R. Pandey, Combined DFT, SCAPS-1D, and wxAMPS frameworks for the design optimization of efficient Cs2AgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12, 35002–35025 (2022). https://doi.org/10.1039/D2RA06734J
M.T. Islam, M.R. Jani, S.M. Al Amin, M.S. Us Sami, K.M. Shorowordi, M.I. Hossain, M. Devgun, S. Chowdhury, S. Banerje, S. Ahmed, Numerical simulation studies of a fully inorganic Cs2AgBiBr 6 perovskite solar device. Opt. Mater. 105, 109957 (2020). https://doi.org/10.1016/j.optmat.2020.109957
S. Ahmed, J. Harris, J. Shaffer, M. Devgun, S. Chowdhury, A. Abdullah, S. Banerjee, Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-corrosive devices. J. Mater. Res. 34, 2789–2795 (2019). https://doi.org/10.1557/jmr.2019.204
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells (2010) 6595–6663.
S. Abdelaziz, A. Zerky, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)
M. Mehrabian, M. Taleb-Abbasi, O. Akhavan, Effects of electron transport layer type on the performance of Pb-free Cs2AgBiBr6 double perovskites: a SCAPS-1D solar simulator–based study. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-30732-0
L.R. Karna, R. Upadhyay, A. Ghosh, All inorganic perovskite photovoltaics for power conversion efficiency of 31%. Sci. Rep. 13, 15212 (2023). https://doi.org/10.1038/s41598-023-42447-w
H. Abnavi, D.K. Maram, A. Abnavi, Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: a simulation study. Opt. Mater. 118, 111258 (2021). https://doi.org/10.1016/j.optmat.2021.111258
V. Deswal, S. Kaushik, R. Kundara, S. Baghel, Numerical simulation of highly efficient Cs2AgInBr6-based double perovskite solar cell using SCAPS 1-D. Mater. Sci. Eng. B 299, 117041 (2024). https://doi.org/10.1016/j.mseb.2023.117041
T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015). https://doi.org/10.1016/j.solmat.2014.10.036
A. Ait Abdelkadir, E. Oublal, M. Sahal, A. Gibaud, Numerical simulation and optimization of n-Al-ZnO/n-CdS/p-CZTSe/p-NiO(HTL)/Mo solar cell system using SCAPS-1D. Results Opt. 8, 100257 (2022). https://doi.org/10.1016/j.rio.2022.100257
D. Jalalian, A. Ghadimi, A. Kiani, Modeling of a high performance bandgap graded Pb-free HTM-free perovskite solar cell. Eur. Phys. J. Appl. Phys. 87, 10101 (2019). https://doi.org/10.1051/epjap/2019190095
M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole tra
Comments (0)