Reduction of crystalline silicon absorber layer thickness in HIT solar cells

M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kumano, Development of new A-Si/C-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 31, 3518 (1992)

ADS  Google Scholar 

T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, S. Nakano, "High-efficiency a-Si/c-Si heterojunction solar cell", Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC, Waikoloa, USA, 1219–1226 (1994)

L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation. Sol. Energy Mater. Sol. Cells 92, 673–681 (2008)

Google Scholar 

M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota, HITTM cells—high-efficiency crystalline Si cells with novel structure. Prog. Photovolt. 8, 503 (2000)

Google Scholar 

K. Yamamoto, D. Adachi, H. Uzu, M. Ichikawa, T. Terashita, T. Meguro, N. Nakanishi, M. Yoshimi, J.L. Hernández, High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology. Jpn. J. Appl. Phys. 54((8S1)), 08KD15 (2015)

Google Scholar 

D. Adachi, J.L. Hernández, K. Yamamoto, Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015)

ADS  Google Scholar 

M. Green, E.D. Dunlop, M. Yoshita et al., Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 32(1), 3–13 (2024)

Google Scholar 

Y. Cao et al., Development of silicon heterojunction solar cell technology for manufacturing. Jpn. J. Appl. Phys. 57, 08RB15 (2018)

Google Scholar 

K. Yoshikawa, H. Kawasaki, W. Yoshida et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 5, 17032 (2017)

ADS  Google Scholar 

W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)

ADS  Google Scholar 

H. Lin, M. Yang, X. Ru et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023)

ADS  Google Scholar 

W.L. Rahal, D. Rached, F. Mahi, F. Azzemou, Simulation and optimization of back surface field for efficient HIT solar cells. SILICON 14, 2999–3003 (2022)

Google Scholar 

M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovolt. Res. Apl. 12, 143 (2004)

Google Scholar 

J. Verschraegen, M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 515, 6276 (2007)

ADS  Google Scholar 

K.S.M. DecockKhelifiBurgelman, Modelling multivalent defects in thin film solar cells. Thin Solid Films 2011, 7481 (2011)

Google Scholar 

F. Azzemou, D. Rached, W.L. Rahal, Optimisation of emitter properties for silicon heterojunction solar cell ITO/pa-Si: H/ia-Si: H/nc-Si/BSF/Al. Optik 217, 164802 (2020)

Google Scholar 

T. Rahman, A. To, M.E. Pollard et al., Minimising bulk lifetime degradation during the processing of interdigitated back contact silicon solar cells. Prog. Photovolt. Res. Appl. 26(1), 38 (2018)

Google Scholar 

A. Florakis et al., Simulation of the phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or ion implantation and annealing. Energy Proced. 38, 263–269 (2013)

Google Scholar 

X. Yang et al., HIT solar cells with N-type low-cost metallurgical Si. Adv. Opto Electron. 7368175, 5 (2018)

Google Scholar 

Comments (0)

No login
gif