Compensation of ring airy gaussian vortex beams based on an improved algorithm

L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185

Article  ADS  Google Scholar 

K. Zou, K. Pang, H. Song et al., High-capacity free-space optical communications using wavelength-and mode-division-multiplexing in the mid-infrared region. Nat. Commun. 13(1), 7662 (2022). https://doi.org/10.1038/s41467-022-35327-w

Article  ADS  Google Scholar 

C. Kai, P. Huang, F. Shen et al., Orbital angular momentum shift keying based optical communication system. IEEE Photon. J. 9(2), 1–10 (2017)

Google Scholar 

A.E. Willner, Y. Ren, G. Xie et al., Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Phil. Trans. R. Soc. A 375, 20150439 (2017). https://doi.org/10.1098/rsta.2015.0439

Article  ADS  Google Scholar 

H. Liu, H. Pu, J. Zhang et al., Investigating the propagation characteristics of modulated circular Airy vortex beam in free space via angular spectrum method. Opt. Commun. 529, 129087 (2023). https://doi.org/10.1016/j.optcom.2022.129087

Article  Google Scholar 

N. Lazer, Y.P.A. Teen, K.B. Rajesh, Vortex carrying circular airy beam in free space optics and aberration effects in turbulent atmosphere. Opt. Quant. Electron. 55(1), 63 (2023). https://doi.org/10.1007/s11082-022-04298-z

Article  Google Scholar 

Y. Shen, X. Yang, D. Naidoo et al., Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 7(7), 820–831 (2020)

ADS  Google Scholar 

K. Qu, B. Li, J. Zhao et al., Ultra-wideband two-dimensional Airy beam generation with an amplitude-tailorable metasurface. Opt. Express 31(2), 1330–1339 (2023)

ADS  Google Scholar 

F. Li, H. Lui, J. Ou, Spiral spectrum of anomalous vortex beams propagating in a weakly turbulent atmosphere. J. Mod. Opt. 67(7), 501–506 (2020)

ADS  MathSciNet  Google Scholar 

S. Berdagué, P. Facq, Mode division multiplexing in optical fibers. Appl. Opt. 21(11), 1950–1955 (1982). https://doi.org/10.1364/AO.21.001950

Article  ADS  Google Scholar 

G. Gibson, J. Courtial, M.J. Padgett et al., Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12(22), 5448–5456 (2004)

ADS  Google Scholar 

S. Jiang, H. Chi, X. Yu et al., Coherently demodulated orbital angular momentum shift keying system using a CNN-based image identifier as demodulator. Opt. Commun. 435, 367–373 (2019). https://doi.org/10.1016/j.optcom.2018.11.054

Article  ADS  Google Scholar 

H. Chi, S. Jiang, J. Ou et al., Comprehensive study of orbital angular momentum shift keying systems with a CNN-based image identifier. Opt. Commun. 454, 124518 (2020)

Google Scholar 

Y. Ren, G. Xie, H. Huang et al., Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. Opt. Lett. 39(10), 2845–2848 (2014). https://doi.org/10.1364/OL.39.002845

Article  ADS  Google Scholar 

S. Fu, S. Zhang, T. Wang et al., Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt. Express 24(6), 6240–6248 (2016)

ADS  Google Scholar 

S. Li, J. Wang, Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Sci. Rep. 7(1), 43233 (2017). https://doi.org/10.1038/srep43233

Article  ADS  Google Scholar 

P. Li, Y. Zhang, S. Liu et al., Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation. Opt. Express 25(5), 5821–5831 (2017). https://doi.org/10.1364/OE.25.005821

Article  ADS  Google Scholar 

Y. Zhang, J. Wang, Z. Zhou et al., Propagation of vortex symmetric Airy beam in the turbulent link. Opt. Commun. 530, 129199 (2023). https://doi.org/10.1016/j.optcom.2022.129199

Article  Google Scholar 

A. Forbes, M. de Oliveira, M.R. Dennis, Structured light. Nat. Photon. 15(4), 253–262 (2021). https://doi.org/10.1038/s41566-021-00780-4

Article  ADS  Google Scholar 

A. Brimis, K.G. Makris, D.G. Papazoglou, Tornado waves. Opt. Lett. 45(2), 280–283 (2020). https://doi.org/10.1364/OL.45.000280

Article  ADS  Google Scholar 

I. Chremmos, P. Zhang, J. Prakash et al., Fourier-space generation of abruptly autofocusing beams and optical bottle beams. Opt. Lett. 36(18), 3675–3677 (2011)

ADS  Google Scholar 

P. Yue, J. Hu, X. Yi et al., Effect of Airy Gaussian vortex beam array on reducing intermode crosstalk induced by atmospheric turbulence. Opt. Express 27(26), 37986–37998 (2019). https://doi.org/10.1364/OE.27.037986

Article  ADS  Google Scholar 

M.A. Bandres, J.C. Gutiérrez-Vega, Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Express 15(25), 16719–16728 (2007)

ADS  Google Scholar 

B. Chen, C. Chen, X. Peng et al., Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt. Express 23(15), 19288–19298 (2015). https://doi.org/10.1364/OE.23.019288

Article  ADS  Google Scholar 

M. Krenn, J. Handsteiner, M. Fink et al., Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U.S.A. 113(48), 13648–13653 (2016). https://doi.org/10.1073/pnas.1612023113

Article  ADS  Google Scholar 

M. Krenn, R. Fickler, M. Fink et al., Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16(11), 113028 (2014)

Google Scholar 

S. Fu, S. Zhang, T. Wang et al., Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm. Opt. Lett. 41(14), 3185–3188 (2016). https://doi.org/10.1364/OL.41.003185

Article  ADS  Google Scholar 

Z. Zhu, M. Janasik, A. Fyffe et al., Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun. 12(1), 1666 (2021). https://doi.org/10.1038/s41467-021-21793-1

Article  ADS  Google Scholar 

Y. Zhai, S. Fu, J. Zhang et al., Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data. Opt. Express 28(5), 7515–7527 (2020)

ADS  Google Scholar 

S. Lohani, R.T. Glasser, Turbulence correction with artificial neural networks. Opt. Lett. 43(11), 2611–2614 (2018). https://doi.org/10.1364/OL.43.002611

Article  ADS  Google Scholar 

C. He, Y. Shen, A. Forbes, Towards higher-dimensional structured light. Light: Sci. Appl. 11(1), 205 (2022). https://doi.org/10.1038/s41377-022-00897-3

Article  Google Scholar 

J. Wang, J.Y. Yang, I.M. Fazal et al., Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6(7), 488–496 (2012)

ADS  Google Scholar 

Comments (0)

No login
gif