A.M. Kamoona, J. Chandra Patra, A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images. Appl. Soft Comput. 85, 105749 (2019). https://doi.org/10.1016/j.asoc.2019.105749
A. Ahmad, N.K. Verma, R.M. Aziz, Optimizing gene selection and cancer classification with hybrid sine cosine and cuckoo search algorithm. J. Med. Syst. 1(1), 111 (2024). https://doi.org/10.1007/s10916-023-02031-1
M. Alzaqebah, K. Briki, N. Al Refai, S. Brini, S. Jawarneh, M. Alsmadi, R. Mohammad, I. Almarashdeh, F. Alghamdi, N. Aldhafferi, A. Abdullah. Memory based cuckoo search algorithm for feature selection of gene expression dataset. Inform. Med. Unlocked. 24, 100572 (2021). https://doi.org/10.1016/j.imu.2021.100572
V. Atanasiu, I. Marthot-Santaniello, Personalizing image enhancement for critical visual tasks: improved legibility of papyri using color processing and visual illusions. Int. J. Doc. Anal. Recogn. 25, 129–160 (2022). https://doi.org/10.1007/s10032-021-00386-0
N.B. Bahadure, A.K. Ray, H. Thethi, Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int. J. Biomed. Imaging 2017, 1–12 (2017). https://doi.org/10.1155/2017/9749108
P. Barthelemy, J. Bertolotti, A Lévy flight for light. Nature 453(7194), 495–498 (2008). https://doi.org/10.1038/nature06948
B. Natarajan, SRS. Chakravarthy, VV. Kumar, B. Kavya, G. Meghana, H. Rajaguru. "Breast Cancer Diagnosis Using Elephant Herding Optimization and Sparse Autoencoder Through Gene Expression Analysis." Proceedings of the 15th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2023), edited by A. Bajaj, A. Abraham, and O. Castillo, Lecture Notes in Networks and Systems, vol. 1243, Springer, 2025, pp. 44–56. https://doi.org/10.1007/978-3-031-81080-0_4.
C. Ummuhan, B. Alatas, Performance comparisons of current metaheuristic algorithms on unconstrained optimization problems. Periodicals Eng. Natural Sci. 5(3), 403–409 (2017). https://doi.org/10.21533/pen.v5i3.120
C. Tarun, Intuitionistic fuzzy approach for enhancement of low contrast mammogram images. Int. J. Imag. Syst. Technol. (2020). https://doi.org/10.1002/ima.22437
E. Daniel, A. Jude, Optimum wavelet-based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Comput. Biol. Med. 71, 149–155 (2016). https://doi.org/10.1016/j.compbiomed.2016.02.011
D.K. Patra, T. Si, S. Mondal, A. Das, P.K. Nanda, S. Sweta, V. Tripathy, Breast lesion detection from MRI images using quasi-oppositional slime mould algorithm. Multimed. Tools Appl. 82, 30599–30641 (2023). https://doi.org/10.1007/s11042-023-14329-w
D.K. Patra, T. Si, S. Mondal, A. Das, P.K. Nanda, S. Sweta, V. Tripathy, Magnetic resonance image of breast segmentation by multi-level thresholding using moth-flame optimization and whale optimization algorithms. Pattern Recognition Image Anal. 32, 174–186 (2022). https://doi.org/10.1134/S1054661822010060
U. Haris, V. Kabeer, K. Afsal, Breast Cancer Segmentation Using Hybrid HHO-CS SVM Optimization Techniques. Multimed. Tools Appl. 83, 69145–69167 (2024). https://doi.org/10.1007/s11042-023-18025-0
Heath, Michael, Kevin W. Bowyer, Daniel Kopans, Richard Moore, and Philip Kegelmeyer. "Current Status of the Digital Database for Screening Mammography." Digital Mammography, edited by Nico Karssemeijer, Martin Thijssen, Jos Hendriks, and Luc van Erning, Computational Imaging and Vision, vol. 13, Springer, 1998, pp. 749–761. https://doi.org/10.1007/978-94-011-5318-8_75.
S. Iniyan, M.S. Raja, R. Poonguzhali, A. Srinivasan, R. Keerthika, Enhanced breast cancer diagnosis through integration of computer vision with fusion-based joint transfer learning using multi-modality medical images. Sci. Rep. 14, 28376 (2024). https://doi.org/10.1038/s41598-024-79363-6
A. Jabeen, M.M. Riaz, N. Iltaf, A. Ghafoor, Image contrast enhancement using weighted transformation function. IEEE Sensors J. 16(20), 7534–7536 (2016)
A.N. Karahaliou, I.S. Skiadopoulos, S.G. Skiadopoulos, F.N. Sakellaropoulos, N.S. Arikidis, E.A. Likaki, G.S. Panayiotakis, L.I. Costaridou, Breast cancer diagnosis: analyzing texture of tissue surrounding microcalcifications. IEEE Trans. Inf. Technol. Biomed. 12(6), 731–738 (2008)
N. Kavitha, P. Madhumathy, R.M. Prasad, Machine learning technique for breast cancer detection and classification. Mach. Learn. Comput. Sci. Eng. 1, 16 (2025). https://doi.org/10.1007/s44379-025-00018-y
K. Dhal Gopal, S. Das, Cuckoo search with search strategies and proper objective function for brightness preserving image enhancement. Pattern Recognition Image Anal. 27(4), 695–712 (2017). https://doi.org/10.1134/S1054661817040046
P.J.S. Kumar, S. Shibu, M. Mohan, T. Kalaichelvi, Hybrid deep learning enabled breast cancer detection using mammogram images. Biomed. Signal Process. Control 95(Part A), 106310 (2024). https://doi.org/10.1016/j.bspc.2024.106310
V. Kusla, G.S. Brar, H. Kaur et al., Chameleon swarm algorithm with morlet wavelet mutation for superior optimization performance. Sci. Rep. 15, 13971 (2025). https://doi.org/10.1038/s41598-025-97015-1
K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2014)
H. Li, M.L. Giger, O.I. Olopade, A. Margolis, Li. Lan, M.R. Chinander, Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms. Acad. Radiol. 12(7), 863–873 (2005)
H.H. Luong, M.D. Vo, H.P. Phan et al., Improving breast cancer prediction via progressive ensemble and image enhancement. Multimed. Tools Appl. 84, 8623–8650 (2025). https://doi.org/10.1007/s11042-024-19299-1
R. Majji, G. Gopal, O. Rajeswari et al., Smart IoT in breast cancer detection using optimal deep learning. J. Digit. Imaging 36, 1489–1506 (2023). https://doi.org/10.1007/s10278-023-00834-9
M. Malik, F. Ahsan, S. Mohsin, Adaptive image denoising using cuckoo algorithm. Soft. Comput. 20(3), 925–938 (2016). https://doi.org/10.1007/s00500-014-1552-x
S.N. Makhadmeh, M.A. Awadallah, S. Kassaymeh et al., Recent advances in multi-objective cuckoo search algorithm, its variants and applications. Archiv. Comput. Methods in Eng. (2025). https://doi.org/10.1007/s11831-025-10240-9
B. Masoudi, H.S. Aghdasi, An Image Segmentation Method Based on Improved Monarch Butterfly Optimization. Iranian Journal of Computer Science 5, 41–54 (2022). https://doi.org/10.1007/s42044-021-00084-4
M. Masotti, N. Lanconelli, R. Campanini, Computer-Aided Mass Detection in Mammography: False Positive Reduction via Gray-Scale Invariant Ranklet Texture Features. Med. Phys. 36, 311–320 (2009)
M.M. Mehdy, P.Y. Ng, E.F. Shair, N.I. Md Saleh, C. Gomes, Artificial neural networks in image processing for early detection of breast cancer. Comput. Math. Methods Med. 2017, 15 (2017). https://doi.org/10.1155/2017/2610628
F. Mohanty, S. Rup, B. Dash, B. Majhi, M. Nagarajan Swamy, Mammogram classification using contourlet features with forest optimization-based feature selection approach. Multimed. Tools Appl. 78(10), 12805–12834 (2019)
M. Noor, Nor’ain S. M. Sahidi, H. Yazid, K. S. A. Rahman, and S. Daud. "Contrast Enhancement Method Using Partial Contrast Technique on Breast Cancer Histopathology Images." In: 6th International Conference on Biomedical Engineering (ICOBE 2023), edited by H. L. Lee, H. Yazid, and F. Ibrahim, IFMBE Proceedings, vol. 115, Springer, , pp. 105–116.,(2025) https://doi.org/10.1007/978-3-031-80355-0_12.
Natarajan, Rajesh, S. Krishna, H. L. Gururaj, and et al. "A Novel Hybrid Dynamic Harris Hawks Optimized Gated Recurrent Unit Approach for Breast Cancer Prediction." International Journal of Computational Intelligence Systems, vol. 18, article 7, (2025). https://doi.org/10.1007/s44196-024-00712-4.
D. Nie, L. Wang, E. Adeli et al., 3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation. IEEE Trans. Cybernetics 49, 1123–1136 (2019). https://doi.org/10.1109/tcyb.2018.2797905
F.L.S. Numes, H. Schiabel, C.E. Goes, Contrast enhancement in dense breast images to aid clustered microcalcifications detections. J. Digital Imag. 20(1), 53–66 (2007)
R. Pal, P. Roy, S. Mallick, S. Mukhopadhyay, S. Sarkar, M. Hinchey, A Multi-Objective Cuckoo Search Algorithm Using Generalized Lévy Flight and Dissimilar Egg Identification for Multispectral Image Thresholding. Appl. Soft Comput. 175, 113054 (2025). https://doi.org/10.1016/j.asoc.2025.113054
S. Panigrahi, H. Swapnarekha, S. Subudhi. "GACO: A Genetic Algorithm with Ant Colony Optimization-Based Feature Selection for Breast Cancer Diagnosis." In Nature-Inspired Optimization Methodologies in Biomedical and Healthcare, edited by Jyotirmay Nayak, Ajith K. Das, B. Naresh Kumar Meher, and Saikat Brahnam, Intelligent Systems Reference Library, vol. 233, Springer, , pp. 157–174., (2023) https://doi.org/10.1007/978-3-031-17544-2_12.
A.S. Parihar, O.P. Verma, Contrast enhancement using entropy-based dynamic sub-histogram equalisation. IET Image Process. 10(11), 799–808 (2016)
I. Pavlyukevich, Lévy Flights, Non-Local Search and Simulated Annealing. J. Comput. Phys. 226(2), 1830–1844 (2007)
P. Bhalerao, S.V. Bonde, Cuckoo search-based multi-objective algorithm with decomposition for detection of masses in mammogram images. Int. J. Inform. Technol. 13, 2215–2226 (2021). https://doi.org/10.1007/s41870-021-00805-9
A. Prakash, A.K. Bhandari, Cuckoo search constrained gamma masking for MRI image contrast enhancement. Multimedia Tools and Applications 82, 40129–40148 (2023). https://doi.org/10.1007/s11042-023-14545-4
A.M. Reynolds, M.A. Frye, Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2(4), e354 (2007)
J. Robertson, P. Kirkland, J.A. Alanis, et al. Ultrafast neuromorphic photonic image processing with a VCSEL neuron. Sci. Rep. 12, 4874 (2022). https://doi.org/10.1038/s41598-022-08703-1
P. Sahni, N. Mittal, Breast cancer detection using image processing techniques (2019). https://doi.org/10.1007/978-981-13-6577-5_79
M. Sameti, R.K. Ward, J. Morgan-Parkes, B. Palcic, Image feature extraction in the last screening mammograms prior to detection of breast cancer. IEEE J. Select. Topics Signal Process. 3(1), 46–52 (2009)
Comments (0)