J.E. Greene, Tracing the 5000-year recorded history of inorganic thin films from 3000 BC to the early 1900s AD. Appl. Phys. Rev. 1, 041302 (2014). https://doi.org/10.1063/1.4902760
I. Birney, Current research in thin film deposition: applications, theory, processing, and characterisation. Coatings 10, 1228 (2020). https://doi.org/10.3390/coatings10121228
A.F. González, P.A. Sobarzo, C. Saldías et al., Evaluation of thermal evaporation as a deposition method for vacuum-processed polymer-based organic photovoltaic devices. APL Energy 3, 026105 (2025). https://doi.org/10.1063/5.0247356
H. Soonmin, A brief review of the growth of pulsed laser deposited thin films. Br. J. Appl. Sci. Technol. 14, 1 (2016). https://doi.org/10.9734/BJAST/2016/22778
P. Sigmund, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383 (1969). https://doi.org/10.1103/PhysRev.184.383
M. Biswas, P.-C. Su, Chemical solution deposition technique of thin-film ceramic electrolytes for solid oxide fuel cells. Mod. Technol. Creat. Thin-Film Syst. Coat. (2017). https://doi.org/10.5772/66125
W. Gu, Q. Li, R. Wang et al., Recent progress in the applications of langmuir-blodgett film technology. Nanomaterials 14, 1039 (2024). https://doi.org/10.3390/nano14121039
D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005). https://doi.org/10.1007/s10832-005-0870-x
N. Kumar, K. Misra, S. Jain, B. Choudhary, Structural and morphological properties of Ce doped ZnO. in AIP Conference Proceedings (American Institute of Physics, 2013), pp. 605–606
A. Katiyar, N. Kumar, R. Shukla, A. Srivastava, Synergistic effect of Fe and Ag co-doping on the persistent photoconductivity of vertical ZnO nanorods. Ceram. Int. 48, 23002–23015 (2022). https://doi.org/10.1016/j.ceramint.2022.04.277
C.J. Brinker, G. Frye, A. Hurd, C. Ashley, Fundamentals of sol–gel dip coating. Thin Solid Films 201, 97–108 (1991). https://doi.org/10.1016/0040-6090(91)90158-T
C. Brinker, A. Hurd, P. Schunk et al., Review of sol–gel thin film formation. J. Non-Cryst. Solids 147, 424–436 (1992). https://doi.org/10.1016/S0022-3093(05)80653-2
D. Loza, V. Guerrero, R. Dabirian, Construction of low cost spin and dip coaters for thin film deposition using open source technology. Momento Rev. Fis. 49, 13–25 (2014)
H. Kumazawa, K. Masuda, Fabrication of barium titanate thin films with a high dielectric constant by a sol–gel technique. Thin Solid Films 353, 144–148 (1999). https://doi.org/10.1016/S0040-6090(99)00427-7
S. Pal, R. Kamparath, V. Subrahmanyam et al., Sol-gel dip coating of Ta2O5/SiO2 anti-reflection films on fused silica for developing laser optics with high laser induced damage threshold. J. Sol–Gel Sci. Technol. (2025). https://doi.org/10.1007/s10971-025-06761-1
H. Liu, P. Wang, Q. Fan et al., λ/4–λ/4 double-layer broadband antireflective coatings with constant high transmittance. Coatings 12, 435 (2022). https://doi.org/10.3390/coatings12040435
R.B. Figueira, C.J. Silva, E.V. Pereira, Influence of experimental parameters using the dip-coating method on the barrier performance of hybrid sol-gel coatings in strong alkaline environments. Coatings 5, 124–141 (2015). https://doi.org/10.3390/coatings5020124
X. Guo, Y. Zhao, X. Xu et al., Biomimetic flexible strain sensor with high linearity using double conducting layers. Compos. Sci. Technol. 213, 108908 (2021). https://doi.org/10.1016/j.compscitech.2021.108908
N. Negishi, K. Takeuchi, Preparation of TiO2 thin film photocatalysts by dip coating using a highly viscous solvent. J. Sol–Gel Sci. Technol. 22, 23–31 (2001). https://doi.org/10.1023/A:1011204001482
A. Haritha, M. Cruz, O. Sisman et al., Influence of annealing temperature on the photocatalytic efficiency of sol–gel dip-coated ZnO thin films in methyl orange degradation. Open Ceram. 21, 100727 (2025). https://doi.org/10.1016/j.oceram.2024.100727
U. Bellè, D. Spini, B. Del Curto et al., Water-based photocatalytic sol–gel TiO2 coatings: synthesis and durability. Catalysts 13, 494 (2023). https://doi.org/10.3390/catal13030494
A.I. Visan, G. Popescu-Pelin, O. Gherasim et al., Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions. Polymers 12, 717 (2020). https://doi.org/10.3390/polym12030717
J.E. Grayson, Python and Tkinter Programming (Manning Publications Co., 2000)
A.D. Moore, Python GUI Programming with Tkinter: Develop Responsive and Powerful GUI Applications with Tkinter (Packt Publishing Ltd, 2018)
S. Vyas, A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johns Matthey Technol. Rev. 64, 202–218 (2020). https://doi.org/10.1595/205651320X15694993568524
A. Katiyar, N. Kumar, R. Shukla, A. Srivastava, Influence of alkali hydroxides on synthesis, physico-chemical and photoluminescence properties of zinc oxide nanoparticles. Mater. Today Proc. 29, 885–889 (2020). https://doi.org/10.1016/j.matpr.2020.05.112
A. Srivastava, N. Kumar, S. Khare, Enhancement in UV emission and band gap by Fe doping in ZnO thin films. Opto-Electron. Rev. 22, 68–76 (2014). https://doi.org/10.2478/s11772-014-0179-x
F.S. Rocha, A.J. Gomes, C.N. Lunardi et al., Experimental methods in chemical engineering: ultraviolet visible spectroscopy—UV-Vis. Can. J. Chem. Eng. 96, 2512–2517 (2018). https://doi.org/10.1002/cjce.23344
Z.R. Khan, M.S. Khan, M. Zulfequar et al., Optical and structural properties of ZnO thin films fabricated by sol–gel method. Mater. Sci. Appl. 2, 340–345 (2011). https://doi.org/10.4236/msa.2011.25044
T. Srinivasulu, K. Saritha, K.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 3, 76–85 (2017). https://doi.org/10.1016/j.moem.2017.07.001
Comments (0)