A comparative analysis of solutions of the nonlinear Helmholtz equation for the electric field in a cylindrical metamaterial waveguide with cylindrical symmetry

G. Baruch, G. Fibich, S. Tsynkov, High-order numerical solution of the nonlinear Helmholtz equation with axial symmetry. J. Comput. Appl. Math. (2007). https://doi.org/10.1016/j.cam.2006.01.048

Article  MathSciNet  Google Scholar 

R.W. Boyd, Nonlinear optics, 4th edn. (Academic Press, London, 2020), pp.203–217

Google Scholar 

F. Hache, Optique non linéaire (CNRS Editions, Paris, 2016), pp.71–82

Google Scholar 

W.J. Padilla, D.R. Smith, D.N. Basov, Spectroscopy of metamaterials from infrared to optical frequencies. J. Opt. Soc. Am. B (2006). https://doi.org/10.1364/JOSAB.23.000404

Article  Google Scholar 

X. Guo, J. Cao, Z. Duan, Double negative behavior of a circular waveguide with metamaterials. In: 2012 international workshop on metamaterials (Meta), 08–10 October 2012, Nanjing, China, p. (1–2). https://doi.org/10.1109/META.2012.6464920

A. Yalçınkaya, A. Çetin, Characteristic frequencies of transverse electric modes in a double negative slab waveguide with Kerr-type nonlinearity. SPQEO (2024). https://doi.org/10.15407/spqeo27.03.320

Article  Google Scholar 

X. He, K. Wang, L. Xu, Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. ERA (2020). https://doi.org/10.3934/era.2020079

Article  Google Scholar 

V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and Sov. Phys. Uspekhi (1968). https://ui.adsabs.harvard.edu/link_gateway/1968SvPhU.10.509V/10.1070/PU1968v010n04ABEH003699

R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Sci. (2001). https://doi.org/10.1126/science.1058847

Article  Google Scholar 

J.B. Pendry, A.J. Holden, D.J. Robbies, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. T-MTT (1999). https://doi.org/10.1109/22.798002

Article  Google Scholar 

A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.91.037401

Article  Google Scholar 

M. Lapine, M. Gorkunov, K.H. Ringhofer, Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E. (2003). https://doi.org/10.1103/PhysRevE.67.065601

Article  Google Scholar 

Y. Xiang, X. Dai, S. Wen, D. Fan, Review of nonlinear optics in metamaterials, PIERS Proceedings, Hangzhou, China, March 24–28, 952–962 (2008)

K. Kawano, T. Kitoh, Introduction to optical waveguide analysis (Wiley, New York, 2001), pp.13–164

Google Scholar 

G. Keiser, Optical fiber communications essentials (McGraw Hill, New York, 2003), pp.47–64

Google Scholar 

J.M. Senior, Optical fiber communications principles and practice, 3rd edn. (Pearson, London, 2009), pp.12–163

Google Scholar 

E. Voges, K. Petermann (Hrsg), Optische Kommunikationstechnik (Springer Verlag, Berlin, 2002), pp. 261–275. https://doi.org/10.1007/978-3-642-56395-9

V. Brückner, Elemente optischer Netze, 2nd edn. (Vieweg+Teubner, Berlin, 2011), pp.70–116

Google Scholar 

H.S. Ashour, TE and TM modal dispersion in cylindrical lossy terahertz metamaterial waveguide. IJEEE 2(4), 9–20 (2013)

Google Scholar 

J.G. Pollock, A.K. Iyer, Below-cutoff propagation in metamaterial-lined circular waveguides. T-MTT (2013). https://doi.org/10.1109/TMTT.2013.2274780

Article  Google Scholar 

Z. Fan, J. Sun, Y. Cao, Z. Song, P. Wu, Y. Shi, Mode selection characteristics in a circular waveguide loaded with a left-handed Metamaterial. AIP Adv. (2019). https://doi.org/10.1063/1.5099078

Article  Google Scholar 

A. Bhardwaj, D. Pratap, M. Semple, A.K. Iyer, A.M. Jayannavar, S.A. Ramakrishna, Properties of waveguides filled with anisotropic metamaterials. C. R. Phys. (2020). https://doi.org/10.5802/crphys.19

Article  Google Scholar 

A.V. Novitsky, L.M. Barkovsky, Guided modes in negative-refractive-index fibres. J. Opt. A Pure Appl. Opt. (2005). https://doi.org/10.1088/1464-4258/7/2/007

Article  Google Scholar 

B. Ghosh, A.B. Kakade, Guided modes in a metamaterial-filled circular waveguide. Electromagnetics (2012). https://doi.org/10.1080/02726343.2012.726913

Article  Google Scholar 

M. Hatun, F. Vatansever, Differential equation solver simulator for Runga-Kutta methods. UUJFE (2016). https://doi.org/10.17482/uujfe.70981 (also available from https://dergipark.org.tr/tr/download/article-file/262953

L. Yuan, Y.Y. Lu, Robust iterative method for nonlinear Helmholtz equation. J. Comput. Phys. (2017). https://doi.org/10.1016/j.jcp.2017.04.046

Article  MathSciNet  Google Scholar 

G. Fibich, S. Tsynkov, Numerical solution of the nonlinear Helmholtz equation using non-orthogonal expansions. J. Comput. Phys. (2005). https://doi.org/10.1016/j.jcp.2005.04.015

Article  Google Scholar 

M. Thongmoon, S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations. Nonlinear Anal. Hybrid Syst. (2010). https://doi.org/10.1016/j.nahs.2009.10.006

Article  MathSciNet  Google Scholar 

I.H.A.-H. Hassan, Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. (2008). https://doi.org/10.1016/j.apm.2007.09.025

Article  MathSciNet  Google Scholar 

C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers (McGraw Hill, New York, 1978), pp. 1–10

Google Scholar 

J. Kevorkian, J.D. Cole, Multiple scale and singular perturbation methods, applied mathematical sciences 114 (Springer Verlag, New York, 1996), pp.537–540

Google Scholar 

S. Bhattacharyya, A.K. Thander, Slab waveguide communication study using finite difference method (FDM) with fourth-order compact scheme. Results Opt. (2024). https://doi.org/10.1016/j.rio.2024.100681

Article  Google Scholar 

G.F. Duressal, T.A. Bullo, G.G. Kiltu, Fourth order compact finite difference method for solving one dimensional wave equation. Int. J. Eng. Appl. Sci. (IJEAS) 8(4), 30 (2016)

Google Scholar 

Comments (0)

No login
gif