G. Baruch, G. Fibich, S. Tsynkov, High-order numerical solution of the nonlinear Helmholtz equation with axial symmetry. J. Comput. Appl. Math. (2007). https://doi.org/10.1016/j.cam.2006.01.048
Article MathSciNet Google Scholar
R.W. Boyd, Nonlinear optics, 4th edn. (Academic Press, London, 2020), pp.203–217
F. Hache, Optique non linéaire (CNRS Editions, Paris, 2016), pp.71–82
W.J. Padilla, D.R. Smith, D.N. Basov, Spectroscopy of metamaterials from infrared to optical frequencies. J. Opt. Soc. Am. B (2006). https://doi.org/10.1364/JOSAB.23.000404
X. Guo, J. Cao, Z. Duan, Double negative behavior of a circular waveguide with metamaterials. In: 2012 international workshop on metamaterials (Meta), 08–10 October 2012, Nanjing, China, p. (1–2). https://doi.org/10.1109/META.2012.6464920
A. Yalçınkaya, A. Çetin, Characteristic frequencies of transverse electric modes in a double negative slab waveguide with Kerr-type nonlinearity. SPQEO (2024). https://doi.org/10.15407/spqeo27.03.320
X. He, K. Wang, L. Xu, Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. ERA (2020). https://doi.org/10.3934/era.2020079
V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and Sov. Phys. Uspekhi (1968). https://ui.adsabs.harvard.edu/link_gateway/1968SvPhU.10.509V/10.1070/PU1968v010n04ABEH003699
R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Sci. (2001). https://doi.org/10.1126/science.1058847
J.B. Pendry, A.J. Holden, D.J. Robbies, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. T-MTT (1999). https://doi.org/10.1109/22.798002
A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.91.037401
M. Lapine, M. Gorkunov, K.H. Ringhofer, Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E. (2003). https://doi.org/10.1103/PhysRevE.67.065601
Y. Xiang, X. Dai, S. Wen, D. Fan, Review of nonlinear optics in metamaterials, PIERS Proceedings, Hangzhou, China, March 24–28, 952–962 (2008)
K. Kawano, T. Kitoh, Introduction to optical waveguide analysis (Wiley, New York, 2001), pp.13–164
G. Keiser, Optical fiber communications essentials (McGraw Hill, New York, 2003), pp.47–64
J.M. Senior, Optical fiber communications principles and practice, 3rd edn. (Pearson, London, 2009), pp.12–163
E. Voges, K. Petermann (Hrsg), Optische Kommunikationstechnik (Springer Verlag, Berlin, 2002), pp. 261–275. https://doi.org/10.1007/978-3-642-56395-9
V. Brückner, Elemente optischer Netze, 2nd edn. (Vieweg+Teubner, Berlin, 2011), pp.70–116
H.S. Ashour, TE and TM modal dispersion in cylindrical lossy terahertz metamaterial waveguide. IJEEE 2(4), 9–20 (2013)
J.G. Pollock, A.K. Iyer, Below-cutoff propagation in metamaterial-lined circular waveguides. T-MTT (2013). https://doi.org/10.1109/TMTT.2013.2274780
Z. Fan, J. Sun, Y. Cao, Z. Song, P. Wu, Y. Shi, Mode selection characteristics in a circular waveguide loaded with a left-handed Metamaterial. AIP Adv. (2019). https://doi.org/10.1063/1.5099078
A. Bhardwaj, D. Pratap, M. Semple, A.K. Iyer, A.M. Jayannavar, S.A. Ramakrishna, Properties of waveguides filled with anisotropic metamaterials. C. R. Phys. (2020). https://doi.org/10.5802/crphys.19
A.V. Novitsky, L.M. Barkovsky, Guided modes in negative-refractive-index fibres. J. Opt. A Pure Appl. Opt. (2005). https://doi.org/10.1088/1464-4258/7/2/007
B. Ghosh, A.B. Kakade, Guided modes in a metamaterial-filled circular waveguide. Electromagnetics (2012). https://doi.org/10.1080/02726343.2012.726913
M. Hatun, F. Vatansever, Differential equation solver simulator for Runga-Kutta methods. UUJFE (2016). https://doi.org/10.17482/uujfe.70981 (also available from https://dergipark.org.tr/tr/download/article-file/262953
L. Yuan, Y.Y. Lu, Robust iterative method for nonlinear Helmholtz equation. J. Comput. Phys. (2017). https://doi.org/10.1016/j.jcp.2017.04.046
Article MathSciNet Google Scholar
G. Fibich, S. Tsynkov, Numerical solution of the nonlinear Helmholtz equation using non-orthogonal expansions. J. Comput. Phys. (2005). https://doi.org/10.1016/j.jcp.2005.04.015
M. Thongmoon, S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations. Nonlinear Anal. Hybrid Syst. (2010). https://doi.org/10.1016/j.nahs.2009.10.006
Article MathSciNet Google Scholar
I.H.A.-H. Hassan, Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. (2008). https://doi.org/10.1016/j.apm.2007.09.025
Article MathSciNet Google Scholar
C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers (McGraw Hill, New York, 1978), pp. 1–10
J. Kevorkian, J.D. Cole, Multiple scale and singular perturbation methods, applied mathematical sciences 114 (Springer Verlag, New York, 1996), pp.537–540
S. Bhattacharyya, A.K. Thander, Slab waveguide communication study using finite difference method (FDM) with fourth-order compact scheme. Results Opt. (2024). https://doi.org/10.1016/j.rio.2024.100681
G.F. Duressal, T.A. Bullo, G.G. Kiltu, Fourth order compact finite difference method for solving one dimensional wave equation. Int. J. Eng. Appl. Sci. (IJEAS) 8(4), 30 (2016)
Comments (0)