Practical implementation and performance evaluation of different modulation and forward error correction techniques in underwater optical communication testbed

M. Jahanbakht, W. Xiang, L. Hanzo, M.R. Azghadi, Internet of underwater things and big marine data analytics—a comprehensive survey. IEEE Commun. Surv. Tutorials 23, 904–956 (2021)

Google Scholar 

Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K.B. Letaief, H.V. Poor, A Tutorial on extremely large-scale MIMO for 6G: fundamentals, signal processing, and applications. IEEE Commun. Surv. Tutorials 26, 1560–1605 (2024). https://doi.org/10.1109/COMST.2023.3349276

Article  Google Scholar 

S. Kaur, Performance analysis of DP-QPSK with CO-OFDM using OSSB generation. Wireless Netw. 28, 1719–1730 (2022). https://doi.org/10.1007/s11276-022-02933-x

Article  Google Scholar 

L. Fu, D. Ning, R. Wang, R. Mayon, Numerical and experimental study on hydrodynamic performance of a land-based dual-chamber OWC device under irregular waves. Renew. Sustain. Energy Rev. 207, 114895 (2025). https://doi.org/10.1016/j.rser.2024.114895.

Article  Google Scholar 

B. Deng, J. Wang, Z. Wang, Z.A.H. Qasem, Q. Li, X. Tang, C. Chen, H.Y. Fu, Polarization multiplexing based UOWC systems under bubble turbulence. J. Lightwave Technol. 41, 5588–5598 (2023)

ADS  Google Scholar 

Z.A.H. Qasem, A. Ali, B. Deng, Q. Li, H.Y. Fu, Unipolar X-Transform OFDM With index modulation for underwater optical wireless communications. IEEE Photonics Technol. Lett. 35, 581–584 (2023). https://doi.org/10.1109/LPT.2023.3264561

Article  ADS  Google Scholar 

Z.A.H. Qasem, A. Ali, B. Deng, Q. Li, H.Y. Fu, Spectral and energy efficient pilot-assisted PAPR reduction technique for underwater wireless optical communication systems. J. Lightwave Technol. 42, 841–852 (2024)

ADS  Google Scholar 

D.A. Rockwell, G.S. Mecherle, Optical wireless: low-cost, broadband, optical access, SONA Communications Corporation (2007).

S. Li, L. Yang, D.B. Da Costa, S. Yu, Performance analysis of UAV-based mixed RF-UWOC transmission systems. IEEE Trans. Commun. 69, 5559–5572 (2021). https://doi.org/10.1109/TCOMM.2021.3076790

Article  Google Scholar 

K. Zhang, C. Sun, W. Shi, J. Lin, B. Li, W. Liu, D. Chen, A. Zhang, Turbidity-tolerant underwater wireless optical communications using dense blue–green wavelength division multiplexing. Opt. Express 32, 20762–20775 (2024). https://doi.org/10.1364/OE.521575

Article  ADS  Google Scholar 

Z. Chen, X. Tang, C. Sun, Z. Li, W. Shi, H. Wang, L. Zhang, A. Zhang, Experimental demonstration of over 14 AL underwater wireless optical communication. IEEE Photonics Technol. Lett. 33, 173–176 (2021). https://doi.org/10.1109/LPT.2020.3048786

Article  ADS  Google Scholar 

J. Mirza, A. Atieh, B. Kanwal, S. Ghafoor, A. Almogren, F. Kanwal, I. Aziz, Relay aided UWOC-SMF-FSO based hybrid link for underwater wireless optical sensor network. Opt. Fiber Technol. (2025). https://doi.org/10.1016/j.yofte.2024.104045

Article  Google Scholar 

Y. Hua, J. Xiong, Y. Gao, H. Zhang, X. Yang, Y. Zhang, C. Cai, L. Wang, Y. Li, J. Xu, Fisheye lens-based UWOC system with an FOV of ±90°. Opt. Express 31, 26888 (2023). https://doi.org/10.1364/OE.498180

Article  ADS  Google Scholar 

S. Li, L. Yang, D.B. Da Costa, J. Zhang, M.S. Alouini, Performance analysis of mixed RF-UWOC dual-hop transmission systems. IEEE Trans. Veh. Technol. 69, 14043–14048 (2020). https://doi.org/10.1109/TVT.2020.3029529

Article  Google Scholar 

C. Chang, X. Han, G. Li, P. Li, W. Nie, P. Liao, C. Li, W. Wang, X. Xie, Extending UWOC system applications through photon transmission dynamics study in harbor waters. Appl. Sci. (Switzerland) (2024). https://doi.org/10.3390/app14062493

Article  Google Scholar 

R. Lin, X. Liu, G. Zhou, Z. Qian, X. Cui, P. Tian, InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging. Adv. Opt. Mater. (2021). https://doi.org/10.1002/ADOM.202002211

Article  Google Scholar 

D. Devappa, S. Banerjee, K. Pawar, Dr. A.V.R. Murthy, Practical realization and performance analysis of Rivest-Shamir-Adleman encryption for secure underwater optical communication, Next Research (2025) 100225. https://doi.org/10.1016/j.nexres.2025.100225.

C. Ben Naila, T. Nakamura, H. Okada, M. Katayama, Evaluation of conventional and imaging MIMO OWC systems using linear array design. IEEE Photonics J. 14 (2022). https://doi.org/10.1109/JPHOT.2022.3203424.

A. Aissaoui, L. Hacini, Enhancing UWOC link performance using a hybrid OFDM/SAC-OCDMA system. Opt Quantum Electron (2024). https://doi.org/10.1007/s11082-023-05599-7

Article  Google Scholar 

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, J. Xu, 26 m/55 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Opt. Express 25, 14760 (2017). https://doi.org/10.1364/OE.25.014760

Article  ADS  Google Scholar 

Z.A.H. Qasem, A. Ali, B. Deng, Q. Li, H.Y. Fu, Reliable deep-learning based underwater optical OFDM wireless communications, in: 2023 Opto-Electronics and communications conference (OECC), : pp. 1–4 (2023). https://doi.org/10.1109/OECC56963.2023.10209946.

U. Kumar, S. Banerjee, A.V.R. Murthy, Bit error rate performance of underwater optical wireless communication test bed simulating the seawater conditions. Optik (Stuttg) 251, 168434 (2022). https://doi.org/10.1016/J.IJLEO.2021.168434

Article  Google Scholar 

A. Elfikky, A.I. Boghdady, A.G. AbdElkader, E.E. Elsayed, K.W.S. Palitharathna, Z. Ali, M. Singh, S.A.H. Mohsan, M. Mahmoud, M.H. Aly, Performance analysis of convolutional codes in dynamic underwater visible light communication systems. Opt Quantum Electron (2024). https://doi.org/10.1007/s11082-023-05325-3

Article  Google Scholar 

S.A.A. El-Mottaleb, M. Singh, A. Atieh, M.H. Aly, Performance analysis of 3 × 10 Gb/s UOWC transmission system based on OCDMA using a DPS code. Opt Quantum Electron (2024). https://doi.org/10.1007/s11082-023-05815-4

Article  Google Scholar 

S.A. Abd El-Mottaleb, M. Singh, A. Atieh, M.H. Aly, Performance evaluation of a UOWC system based on the FRS/OCDMA code for different types of Jerlov waters. Appl. Opt. 63, 762 (2024). https://doi.org/10.1364/ao.507674

Article  ADS  Google Scholar 

M. Singh, A. Armghan, A. Atieh, M.H. Aly, S.A.A. El-Mottaleb, High speed UOWC system using DP states with FRS-OCDMA code. Opt Quantum Electron (2024). https://doi.org/10.1007/s11082-024-06455-y

Article  Google Scholar 

M. Singh, A. Atieh, G. Anand, M.H. Aly, S.A. Abd El-Mottaleb, Underwater optical wireless communication system based on dual polarization states with optical code division multiple access: performance evaluation, Opt Quantum Electron 56 (2024). https://doi.org/10.1007/s11082-023-06192-8.

S.A.A. El-Mottaleb, M. Singh, A. Atieh, M.H. Aly, OCDMA transmission-based underwater wireless optical communication system: performance analysis, Opt Quantum Electron 55 (2023). https://doi.org/10.1007/s11082-023-04742-8.

S. Malathy, M. Singh, J. Malhotra, B. Vasudevan, V. Dhasarathan, Modeling and performance investigation of 4 × 20 Gbps underwater optical wireless communication link incorporating space division multiplexing of Hermite Gaussian modes. Opt Quantum Electron (2020). https://doi.org/10.1007/s11082-020-02380-y.

M. Singh, A. Atieh, M.H. Aly, S.A.A. El-Mottaleb, UOWC transmission system based on OAM beams: performance evaluation, Opt Quantum Electron 55 (2023). https://doi.org/10.1007/s11082-023-05112-0.

M. Singh, A. Atieh, M.H. Aly, S.A.A. El-Mottaleb, Performance analysis for UOWC transmission system using NRZ, AMI, and CSRZ modulation schemes. Opt Quantum Electron (2023). https://doi.org/10.1007/s11082-023-05559-1

Article  Google Scholar 

R.W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950). https://doi.org/10.1002/J.1538-7305.1950.TB00463.X

Article  MathSciNet  Google Scholar 

W.W. Peterson, Encoding and error-correction procedures for the Bose-Chaudhuri codes. IRE Trans. Inf. Theory 6, 459–470 (1960). https://doi.org/10.1109/TIT.1960.1057586

Article  MathSciNet  Google Scholar 

S. Karp, R.M. Gagliardi, The design of a pulse-position modulated optical communication system. IEEE Trans. Commun. Technol. 17, 670–676 (1969). https://doi.org/10.1109/TCOM.1969.1090162

Article  Google Scholar 

M.D. Audeh, J.M. Kahn, Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb/s. IEEE Trans. Commun. 43, 2085–2094 (1995)

Google Scholar 

Z. Ghassemlooy, A.R. Hayes, Digital pulse interval modulation for IR communication systems—a review. Int. J. Commun Syst 13, 519–536 (2000)

Google Scholar 

N.M. Aldibbiat, Z.F. Ghassemlooy, R. McLaughlin, Performance of dual header-pulse interval modulation (DH-PIM) for optical wireless communication systems, in: Optical Wireless Communications III, 2001: pp. 144–152.

Z. Ghassemlooy, W.O. Popoola, S. Rajbhandari, M. Amiri, S. Hashemi, A synopsis of modulation techniques for wireless infrared communication, in: 2007 ICTON Mediterranean Winter Conference, 2007: pp. 1–6.

S. Jaruwatanadilok, Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008). https://doi.org/10.1109/JSAC.2008.081202

Article  Google Scholar 

H.H. Lu, C.Y. Li, H.H. Lin, W.S. Tsai, C.A. Chu, B.R. Chen, C.J. Wu, An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photonics J (2016). https://doi.org/10.1109/JPHOT.2016.2601778

Article  Google Scholar 

H.B. Mangrio, A. Baqai, F.A. Umrani, R. Hussain, Effects of modulation scheme on experimental setup of RGB LEDs based underwater optical communication. Wirel. Pers. Commun. 106, 1827–1839 (2019). https://doi.org/10.1007/s11277-018-5718-1

Article  Google Scholar 

M.M. Al Hammadi, M.J. Islam, Performance evaluation of underwater wireless optical CDMA system for different water types, Photonic Network Communications 39 (2020) 246–254. https://doi.org/10.1007/s11107-020-00886-9.

G. Jeong, S.M. Kim, Performance evaluation of underwater optical wireless communication depending on the modulation scheme. Current Opt. Photonics 6, 39–43 (2022). https://doi.org/10.3807/COPP.2022.6.1.039

Article  Google Scholar 

A. Hamilton, W.O. Popoola, E. Guler, C.T. Geldard, An empirical comparison of modulation schemes in turbulent underwater optical wireless communications. J. Lightwave Technol. 40(7), 2000–2007 (2022)

ADS  Google Scholar 

S. Jain, B.C.D. Devappa, K. Pawar, A.V.R. Murthy, Feasibility analysis of modulation formats in different seawater types and practical implementation on underwater optical communication testbed. J. Opt. (India) (2024). https://doi.org/10.1007/s12596-023-01494-2

Article  Google Scholar 

J.W. Giles, I.N. Bankman, Underwater optical communications systems. Part 2: basic design considerations, in: MILCOM 2005–2005 IEEE Military Communications Conference, 2005: pp. 1700–1705.

P. Dwivedy, V. Dixit, A. Kumar, Cooperative VLC system using OOK modulation with imperfect CSI. Phys. Scr. 98, 25509 (2023). https://doi.org/10.1

Comments (0)

No login
gif