K. Tamersit, F. Djeffal, Double-gate graphene nanoribbon field-effect transistor for dna and gas sensing applications: simulation study and sensitivity analysis. IEEE Sensors J. 16, 4180–4191 (2016). https://doi.org/10.1109/JSEN.2016.2550492
L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010). https://doi.org/10.1364/OE.18.014395
A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quantum Electron. 51, 19 (2019). https://doi.org/10.1007/s11082-018-1726-3
S. Kumar, A. Yadav, B.A. Malomed, High performance surface plasmon resonance based sensor using black phosphorus and magnesium oxide adhesion layer. Front. Mater. 10, 1131412 (2023). https://doi.org/10.3389/fmats.2023.1131412
A. Verma, A. Prakash, R. Tripathi, Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015). https://doi.org/10.1016/j.optcom.2015.08.076
A.A. Rifat, M.R. Hasan, R. Ahmed, A.E. Miroshnichenko. Microstructured Optical Fiber-Based Plasmonic Sensors. Comput. Photonic Sens. 203–232 (2018). https://doi.org/10.1007/978-3-319-76556-3_9
National Cancer Institute, What You Need To Know About Leukemia. Archived from the original on 6 July 2014, retrieved 18 June 2014 (2013).
E. Kretschmann, H. Raether, Notizen: Radiative Decay Of Non Radiative Surface Plasmons Excited By Light. Z. Naturforsch. 23, 2135–2136 (1968). https://doi.org/10.1515/zna-1968-1247
T.B.A. Akib, S.F. Mou, M.M. Rahman, M.M. Rana, M.R. Islam, I.M. Mehedi, M.A.P. Mahmud, A.Z. Kouzani, Design And Numerical Analysis Of A Graphene-Coated Spr Biosensor For Rapid Detection Of The Novel Coronavirus. Sensors 21, 1–5 (2021). https://doi.org/10.3390/s21103491
X. Dai, Y. Liang, Y. Zhao, S. Gan, Y. Jia, Y. Xiang, Sensitivity Enhancement Of A Surface Plasmon Resonance With Tin Selenide (Snse) Allotropes. Sensors 19, 173 (2019). https://doi.org/10.3390/s19010173
P.B. Johnson, R.W. Christy, Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
L. Gao, F. Lemarchand, M. Lequime, Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734–15751 (2012). https://doi.org/10.1364/OE.20.015734
J. Chylek, P. Maniakova, P. Hlubina, J. Sobota, D. Pudis, Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer. Nanomaterials (Basel) 12, 3090 (2022). https://doi.org/10.3390/nano12183090
J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng. R 52, 49–91 (2006). https://doi.org/10.1016/j.mser.2006.04.002
S.H. Wemple, M. Didomenico Jr., I. Camlibel, Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 29, 1797–1803 (1968). https://doi.org/10.1016/0022-3697(68)90164-9
M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, M.S. Uddin, Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection. IEEE Photonics J. 11, 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2924825
P. Sharma, P. Sharan, P. Deshmukh, A photonic crystal sensor for analysis and detection of cancer cells. Proc. 2015 Int. Conf. on Pervasive Computing (ICPC), 1–5 (2015). https://doi.org/10.1109/PERVASIVE.2015.7087208
P. Kumar, V. Kumar, J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik 144, 363–369 (2017). https://doi.org/10.1016/j.ijleo.2017.06.131
K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, M.S. Uddin, Numerical Demonstration of Triangular Shaped Photonic Crystal Fiber-Based Biosensor in the Terahertz Range. IET Optoelectron. (2021). https://doi.org/10.1049/ote2.12006
T. Parvin, K. Ahmed, A. Alatwi, A. Rashed, Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection. Opt. Rev. 28 (2021). https://doi.org/10.1007/s10043-021-00644-w
A.H. Aly, S.K. Awasthi, A.M. Mohamed, M. Al-Dossari, Z.S. Matar, M.A. Mohaseb, A.F. Amin, 1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Phys. Scr. 96, 125533 (2021). https://doi.org/10.1088/1402-4896/ac3efa
A.H. Aly, S.K. Awasthi, A.M. Mohamed, Z.S. Matar, M.A. Mohaseb, M. Al-Dossari, W. Sabra, Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals 11, 1533 (2021). https://doi.org/10.3390/cryst11121533
A.H. Aly, S.K. Awasthi, D. Mohamed, Z.S. Matar, M. Al-Dossari, A.F. Amin, Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC Adv. 11, 32973–32980 (2021). https://doi.org/10.1039/D1RA06513K
R. Kumar, S. Pal, N. Pal, Appl. Sensitivity Enhancement of MXene Based SPR Sensor Using Silicon: Theoretical Analysis. Phys. A 127, 259 (2021). https://doi.org/10.1007/s12633-020-00558-3
M.E. Ouardi, K.A. Meradi, F. Tayeboun, A.H. Aly, Detection of Water-alcohol Content Using Surface Plasmon Resonance. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02285-6
F.A. Sayed, H.A. Elsayed, M. Al-Dossari, M.F. Eissa, A. Mehaney, A.H. Aly, Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection. Sci. Rep. 13, 21793 (2023). https://doi.org/10.1038/s41598-023-48837-4
K.A. Meradi, F. Tayeboun, A. Guerinik, Z.A. Zaky, A.H. Aly, Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt. Quantum Electron. 54, 124 (2022). https://doi.org/10.1007/s11082-021-03504-8
A. Shalabney, I. Abdulhalim, Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators A Phys. 159, 24–32 (2010). https://doi.org/10.1016/j.sna.2010.02.005
K.A. Meradi, F. Tayeboun, A. Guerinik, A.H. Aly, Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt. Quantum Electron. 54, 124 (2022). https://doi.org/10.1007/s11082-021-03504-8
L. Ahlawat, K. Kishor, R.K. Sinha, Photonic spin Hall effect-based ultra-sensitive refractive index sensor for haemoglobin sensing applications. Opt. Laser Technol. 170, 110183 (2024). https://doi.org/10.1016/j.optlastec.2023.110183
S.A. Taya, M.G. Daher, I. Colak, S.K. Patel, A. Pal, A.H.M. Almawgani, G.A. Ali, Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik 281, 170857 (2023). https://doi.org/10.1016/j.ijleo.2023.170857
M.K. Singh, S. Pal, A. Verma, Appl. A nanolayered structure for sensitive detection of hemoglobin concentration using surface plasmon resonance. Phys. A 127, 832 (2021). https://doi.org/10.1007/s00339-021-04985-w
Comments (0)