Sensitivity enhanced surface plasmon resonance biosensor for blood cancer detection

K. Tamersit, F. Djeffal, Double-gate graphene nanoribbon field-effect transistor for dna and gas sensing applications: simulation study and sensitivity analysis. IEEE Sensors J. 16, 4180–4191 (2016). https://doi.org/10.1109/JSEN.2016.2550492

Article  ADS  Google Scholar 

L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010). https://doi.org/10.1364/OE.18.014395

Article  ADS  Google Scholar 

A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quantum Electron. 51, 19 (2019). https://doi.org/10.1007/s11082-018-1726-3

Article  Google Scholar 

S. Kumar, A. Yadav, B.A. Malomed, High performance surface plasmon resonance based sensor using black phosphorus and magnesium oxide adhesion layer. Front. Mater. 10, 1131412 (2023). https://doi.org/10.3389/fmats.2023.1131412

Article  ADS  Google Scholar 

A. Verma, A. Prakash, R. Tripathi, Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015). https://doi.org/10.1016/j.optcom.2015.08.076

Article  ADS  Google Scholar 

A.A. Rifat, M.R. Hasan, R. Ahmed, A.E. Miroshnichenko. Microstructured Optical Fiber-Based Plasmonic Sensors. Comput. Photonic Sens. 203–232 (2018). https://doi.org/10.1007/978-3-319-76556-3_9

Article  Google Scholar 

National Cancer Institute, What You Need To Know About Leukemia. Archived from the original on 6 July 2014, retrieved 18 June 2014 (2013).

E. Kretschmann, H. Raether, Notizen: Radiative Decay Of Non Radiative Surface Plasmons Excited By Light. Z. Naturforsch. 23, 2135–2136 (1968). https://doi.org/10.1515/zna-1968-1247

Article  ADS  Google Scholar 

T.B.A. Akib, S.F. Mou, M.M. Rahman, M.M. Rana, M.R. Islam, I.M. Mehedi, M.A.P. Mahmud, A.Z. Kouzani, Design And Numerical Analysis Of A Graphene-Coated Spr Biosensor For Rapid Detection Of The Novel Coronavirus. Sensors 21, 1–5 (2021). https://doi.org/10.3390/s21103491

Article  Google Scholar 

X. Dai, Y. Liang, Y. Zhao, S. Gan, Y. Jia, Y. Xiang, Sensitivity Enhancement Of A Surface Plasmon Resonance With Tin Selenide (Snse) Allotropes. Sensors 19, 173 (2019). https://doi.org/10.3390/s19010173

Article  ADS  Google Scholar 

P.B. Johnson, R.W. Christy, Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

Article  ADS  Google Scholar 

L. Gao, F. Lemarchand, M. Lequime, Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734–15751 (2012). https://doi.org/10.1364/OE.20.015734

Article  ADS  Google Scholar 

J. Chylek, P. Maniakova, P. Hlubina, J. Sobota, D. Pudis, Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer. Nanomaterials (Basel) 12, 3090 (2022). https://doi.org/10.3390/nano12183090

Article  Google Scholar 

J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng. R 52, 49–91 (2006). https://doi.org/10.1016/j.mser.2006.04.002

Article  Google Scholar 

S.H. Wemple, M. Didomenico Jr., I. Camlibel, Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 29, 1797–1803 (1968). https://doi.org/10.1016/0022-3697(68)90164-9

Article  ADS  Google Scholar 

M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, M.S. Uddin, Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection. IEEE Photonics J. 11, 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2924825

Article  Google Scholar 

P. Sharma, P. Sharan, P. Deshmukh, A photonic crystal sensor for analysis and detection of cancer cells. Proc. 2015 Int. Conf. on Pervasive Computing (ICPC), 1–5 (2015). https://doi.org/10.1109/PERVASIVE.2015.7087208

Article  Google Scholar 

P. Kumar, V. Kumar, J.S. Roy, Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik 144, 363–369 (2017). https://doi.org/10.1016/j.ijleo.2017.06.131

Article  ADS  Google Scholar 

K. Ahmed, B.K. Paul, F. Ahmed, M.A. Jabin, M.S. Uddin, Numerical Demonstration of Triangular Shaped Photonic Crystal Fiber-Based Biosensor in the Terahertz Range. IET Optoelectron. (2021). https://doi.org/10.1049/ote2.12006

Article  Google Scholar 

T. Parvin, K. Ahmed, A. Alatwi, A. Rashed, Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection. Opt. Rev. 28 (2021). https://doi.org/10.1007/s10043-021-00644-w

Article  Google Scholar 

A.H. Aly, S.K. Awasthi, A.M. Mohamed, M. Al-Dossari, Z.S. Matar, M.A. Mohaseb, A.F. Amin, 1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Phys. Scr. 96, 125533 (2021). https://doi.org/10.1088/1402-4896/ac3efa

Article  ADS  Google Scholar 

A.H. Aly, S.K. Awasthi, A.M. Mohamed, Z.S. Matar, M.A. Mohaseb, M. Al-Dossari, W. Sabra, Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals 11, 1533 (2021). https://doi.org/10.3390/cryst11121533

Article  Google Scholar 

A.H. Aly, S.K. Awasthi, D. Mohamed, Z.S. Matar, M. Al-Dossari, A.F. Amin, Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC Adv. 11, 32973–32980 (2021). https://doi.org/10.1039/D1RA06513K

Article  ADS  Google Scholar 

R. Kumar, S. Pal, N. Pal, Appl. Sensitivity Enhancement of MXene Based SPR Sensor Using Silicon: Theoretical Analysis. Phys. A 127, 259 (2021). https://doi.org/10.1007/s12633-020-00558-3

Article  ADS  Google Scholar 

M.E. Ouardi, K.A. Meradi, F. Tayeboun, A.H. Aly, Detection of Water-alcohol Content Using Surface Plasmon Resonance. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02285-6

Article  Google Scholar 

F.A. Sayed, H.A. Elsayed, M. Al-Dossari, M.F. Eissa, A. Mehaney, A.H. Aly, Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection. Sci. Rep. 13, 21793 (2023). https://doi.org/10.1038/s41598-023-48837-4

Article  ADS  Google Scholar 

K.A. Meradi, F. Tayeboun, A. Guerinik, Z.A. Zaky, A.H. Aly, Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt. Quantum Electron. 54, 124 (2022). https://doi.org/10.1007/s11082-021-03504-8

Article  Google Scholar 

A. Shalabney, I. Abdulhalim, Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators A Phys. 159, 24–32 (2010). https://doi.org/10.1016/j.sna.2010.02.005

Article  ADS  Google Scholar 

K.A. Meradi, F. Tayeboun, A. Guerinik, A.H. Aly, Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt. Quantum Electron. 54, 124 (2022). https://doi.org/10.1007/s11082-021-03504-8

Article  Google Scholar 

L. Ahlawat, K. Kishor, R.K. Sinha, Photonic spin Hall effect-based ultra-sensitive refractive index sensor for haemoglobin sensing applications. Opt. Laser Technol. 170, 110183 (2024). https://doi.org/10.1016/j.optlastec.2023.110183

Article  Google Scholar 

S.A. Taya, M.G. Daher, I. Colak, S.K. Patel, A. Pal, A.H.M. Almawgani, G.A. Ali, Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik 281, 170857 (2023). https://doi.org/10.1016/j.ijleo.2023.170857

Article  Google Scholar 

M.K. Singh, S. Pal, A. Verma, Appl. A nanolayered structure for sensitive detection of hemoglobin concentration using surface plasmon resonance. Phys. A 127, 832 (2021). https://doi.org/10.1007/s00339-021-04985-w

Article  ADS  Google Scholar 

Comments (0)

No login
gif