A.A. Sawchuk, T.C. Strand, Digital optical computing. Proc. IEEE 72, 758–779 (1984)
S.K. Gorai, S. Mukhopadhyay, Method of implementing frequency-encoded NOT, OR, and NOR logic operations using lithium niobate waveguide and reflecting semiconductor optical amplifiers. Pramana – J. Phys. 73(5), 901–912 (2009)
M.T. Fatehi, K.C. Wasmundt, S.A. Collins, Optical flip-flops and sequential logic circuits using a liquid crystal light valve. Appl. Opt. 23, 2163–2171 (1984)
T. Chattopadhyay, J.N. Roy, A.K. Chakraborty, Polarization encoded all-optical quaternary R-S flip-flop using a binary latch. Optics Commun. 282, 1287–1293 (2009)
M. T. Hill, H. de Waardt, and H. J. S. Dorren, Fast all-optical flip-flop using coupled Mach-Zehnder interferometers. In: Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. 188 (2001)
J.P. Sokoloff, I. Glesk, P.R. Prucnal, Performance of a 50 GB/s optical time-domain multiplexed system using a TOAD. IEEE Pho. Tech. Lett. 6(1), 98–100 (1994)
S. Kumar, I.B. Pauria, A. Singhal, Optical fiber communication system performance using MZI switching. IJSCE 2(3), 98–107 (2012)
W. Li, S. Ma, H. Hu, N.K. Dutta, All-optical latches using quantum-dot semiconductor optical amplifier. Opt. Commun. 285(24), 5138–5143 (2012)
J. Wang, G. Meloni, G. Berrettini, L. Poti, and A. Bogoni, All-Optical Clocked Flip-flops Exploiting SOA-Based SR Latches and Logic Gates. In: LNCS (ed. By S. Dolev, M. Oltean). OSC 2009. Springer 5882, 15–18 (2009)
M.T. Hill, H. de Waardt, G.D. Khoe, H.J.S. Dorren, All-optical flip-flop based on coupled laser diodes. IEEE J. Quantum Electron. 37, 405–413 (2001)
Y. Liu, M.T. Hill, H. de Waardt, G.D. Khoe, H. Lenstra, H.J.S. Dorren, All-optical flip-flop memory based on two coupled polarisation switches. Electron. Lett. 38, 904–906 (2002)
A. Malacarne, W. Jing, Z. Yuancheng, A.D. Barman, G. Berrettini, A. Poti, L. Bogoni, 20 ps transition time all-optical SOA-based flip-flop used for photonic 10 Gbs switching operation without any bit loss. IEEE J. Sel. Top. Quantum Electron. 14, 808–815 (2008)
A. Kotb, K.E. Zoiros, W. Li, All-optical latches using carrier reservoir semiconductor optical amplifiers. Opt. Laser Technol. 157, 108737 (2023)
L.W. Li, M. Shaozhen, H. Hongyu, N.K. Dutta, All-optical latches based on two-photon absorption in semiconductor optical amplifiers. J. Opt. Soc. Am. B 29, 2603–2609 (2012)
K. Maji, K. Mukherjee, M.K. Mandal, Design and analysis of all-optical latch circuit using RSOA. Mater. Today: Proc. 66(7), 3328–3333 (2022)
H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39, 141–148 (2003)
L. Wang, Y. Wang, C. Wu, All-optical D and T flip-flop based on polarization switch of SOA. Proc. of SPIE (2016). https://doi.org/10.1117/12.2246304
Y. Said, H. Rezig, SOAs nonlinearities and their applications for next generation of optical networks. In: Advances in Optical Amplifiers. InTech (ed. By P. Urquhart). 2, 27–52 (2011)
P.P. Baveja, A.M. Kaplan, D.N. Maywar, G.P. Agrawal, Pulse amplification in semiconductor optical amplifier with ultrafast gain-recovery times. Proc. SPIE. Opt. Compon. Mater. (2010). https://doi.org/10.1117/12.841025
A. Raja, K. Mukherjee, J.N. Roy, K. Maji, Analysis of polarization Encoded optical switch implementing cross-polarization modulation effect in semiconductor optical amplifier. Int. J. Photonics Opt. Technol. 5, 1–5 (2019)
A. Raja, K. Mukherjee, J.N. Roy, Design, analysis, and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J. Comput. Electron. (2021). https://doi.org/10.1007/s10825-020-01607-1
S.K. Garai, D. Samanta, S. Mukhopadhyay, All-optical implementation of inversion logic operation by second harmonic generation and wave mixing character of some nonlinear material. Opt. Optoelectronics Technol. China. 6(4), 43–46 (2008)
K. Komatsu, G. Hosaya, H. Yashima, All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quant. Electron. (2018). https://doi.org/10.1007/s11082-018-1384-5
A. Kotb, K.E. Zoiros, W. Chen, High-Performance Optical NOR Gate with SOA-MZI. Photonics. 12(3), 179 (2025). https://doi.org/10.3390/photonics12030179
A. Kotb, A simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission. J. Korean Phys. Soc. 66, 1593–1598 (2015). https://doi.org/10.3938/jkps.66.1593
A. Kotb, K.E. Zoiros, W. Li, Computational investigation of all-optical NOR logic operation using carrier reservoir semiconductor optical amplifiers at 120 Gb/s. Opt. Quant. Electron. 54(12), 827 (2022). https://doi.org/10.1007/s11082-022-04160-2
K. Mukherjee, Alternative method of implementation of frequency encoded N bit comparator exploiting four-wave mixing in semiconductor optical amplifiers. Optik 123(24), 2276–2280 (2012)
S.K. Chandra, S. Mukhopadhyay, An all-optical approach of implementing a different kind of phase-encoded XOR and XNOR logic operations with the help of four-wave mixing in SOA. Optik 124(6), 505–507 (2013)
A. Raja, K. Mukherjee, J.N. Roy, Analysis of new all-optical polarization-encoded quaternary Galois field adder processing soliton pulses. J. Opt. 49, 83–93 (2020)
K. Mukherjee, Implementation of hybrid encoded all-optical computation using non-linear material-based difference frequency generation alone. Opt. Photonics Lett. 3(1), 61–71 (2010)
K. Mukherjee, A. Raja, K. Maji, All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J. Optics (Springer) (2019). https://doi.org/10.1007/S12596-019-00555-9
S. Zhang, Y. Liu, Q. Zhang, H. Li, Y. Liu, All-optical sampling based on nonlinear polarization rotation in semiconductor optical amplifiers. J. Optoelectron. Biomed. Mater. 1(4), 383–388 (2009)
L. Q. Guo, M. J. Connelly, Signal-induced birefringence and dichorism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion. J. Lightwave Technol. 23(12) (2005)
A. Raja, K. Mukherjee, J.N. Roy, Design of Dual Semiconductor Optical Amplifier structure based all-optical standard quaternary inverter and quaternary clocked SR flip-flop. Opt. Quant. Electron. (2021). https://doi.org/10.1007/s11082-021-03409-6
A. Raja, K. Mukherjee, J.N. Roy, Ultra-high-speed all-optical multi-inverter using nonlinear polarization rotation in semiconductor optical amplifier. J. Opt. (2022). https://doi.org/10.1007/s12596-021-00815-7
J.N. Roy, A. Raja, K. Mukherjee, Polarization encoded all-optical ternary MAX and MIN gate using semiconductor optical amplifier-based switch: design and analysis. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01354-z
A. Bogoni, G. Berrittini, P. Ghelfi, A. Malacarne, G. Meloni, L. Poti, and J. Wang, All-optical flip-flops based on semiconductor technologies. In: Semiconductor Technologies. InTech (ed. By J. Grym). 347–372 (2010)
C. Reis, A. Maziotis, C. Kouloumentas, C. Stamatiadis, M. Bougioukos, N. Calabretta, P. Andre, R. Dionisio, B. Neto, H.J.S. Dorren, H. Avramopoulos, A. Teixeira, All-optical synchronous S-R flip-flop based on active interferometric devices. Electron. Lett. 46(10), 709–710 (2010)
A. Teixeira, Experimental evaluation of all-optical asynchronous and synchronous memories (2011). International Computer Engineering Conference: Expanding Information Society Frontiers (ICENCO’2010)
Y. Pugachov, M. Gulitski, D. Malka, Photonic crystal flip-flops: recent developments in all-optical memory components. Materials (MDPI). (2023). https://doi.org/10.3390/ma16196467
Comments (0)