C. Tu, J. Zhang, Z. Quan, Y. Ding, UWB indoor localization method based on neural network multi-classification for NLOS distance correction. Sens. Actuat. A-Phys. 379, 115904 (2024). https://doi.org/10.1016/j.sna.2024.115904
X. Lu, K. Zhong, Z. Guan, J. Liu, A fingerprint location framework for uneven WiFi signals based on machine learning. IEEE Latin Am. Trans. 22(4), 196–213 (2024). https://doi.org/10.1109/TLA.2024.10473000
C. Wu, Y. Wang, W. Ke, X. Yang, A dual-branch convolutional neural network-based bluetooth low energy indoor positioning algorithm by fusing received signal strength with angle of arrival. Mathematics 12(17), 2658 (2024). https://doi.org/10.3390/math12172658
Z. Wei, J. Chen, H. Tang, H. Zhang, RSSI-based location fingerprint method for RFID indoor positioning: a review. Nondestruct. Test. Evaluat. 39(1), 3–31 (2024). https://doi.org/10.1080/10589759.2023.2253493
J.C. Torres, A. Montes, S.L. Mendoza, P.R. Fernández, J.S. Betancourt, L. Escandell, C.I. Del Valle, J.M. Sánchez-Pena, A low-cost visible light positioning system for indoor positioning. Sensors 20(18), 5145 (2020). https://doi.org/10.3390/s20185145
S. Bastiaens, M. Alijani, W. Joseph, D. Plets, Visible light positioning as a next-generation indoor positioning technology: a tutorial. IEEE Commun Surv Tutor. 26(4), 2867–2913 (2024). https://doi.org/10.1109/COMST.2024.3372153
Z. Wu, Y. Wang, J. Fu, A hybrid RSSI and AoA indoor positioning approach with adapted confidence evaluator. Ad Hoc Netw. 154, 103375 (2024). https://doi.org/10.1016/j.adhoc.2023.103375
X. Yao, H. Zhangming, W. Jiongqi, Z. Xuanying, C. Yuyun, P. Xiaogang, TOA positioning algorithm of LBL system for underwater target based on PSO. J. Syst. Eng. Electron. 34(5), 1319–1332 (2023). https://doi.org/10.23919/JSEE.2023.000107
Y. Zhang, F. He, H. Zhang, H. Yang, Z. Du, Z. Xiao, TDOA and FDOA hybrid positioning of mobile radiation source with receiver position errors. Wirel. Pers. Commun. 137(1), 199–220 (2024). https://doi.org/10.1007/s11277-024-11387-7
B. Chen, J. Ma, L. Zhang, J. Zhou, J. Fan, H. Lan, Research progress of wireless positioning methods based on RSSI. Electronics 13(2), 360 (2021). https://doi.org/10.3390/electronics13020360
C. Jing, L. Xuan, W. Jinyuan, Z. Yonglong, Z. Junwu, An optimization method for visible light indoor positioning based on SO-CNN. Telecommun. Eng. 64(5), 702–709 (2024). https://doi.org/10.20079/j.issn.1001-893x.230616002
Y. Tian, L. Jing, Z. Tong, K. Yang, D. Huang, P. Li, X. Wang, H. Huang, Z. Wang, Y. Jiang, Visible light positioning system based on stacking learning model. Opt. Commun. 578, 131479 (2025). https://doi.org/10.1016/j.optcom.2025.131479
J. Zhang, X. Ke, Delineating regional BES-ELM neural networks for studying indoor visible light positioning. Photonics 11(10), 910 (2024). https://doi.org/10.3390/photonics11100910
A.M.M. Abdalmajeed, M. Mahmoud, A.E.R.A. El-Fikky, H.A. Fayed, M.H. Aly, Improved indoor visible light positioning system using machine learning. Opt. Quant. Electron. 55(3), 209 (2023). https://doi.org/10.1007/s11082-022-04482-1
Y. Mei, Y. Deng, Indoor visible light fingerprint location method based on marine predator algorithm-optimized least squares support vector machine. Appl. Sci. 14(16), 7416 (2024). https://doi.org/10.3390/app14167416
W. Yang, L. Qin, X. Hu, D. Zhao, Indoor visible-light 3D positioning system based on GRU neural network. Photonics 10(6), 633 (2024). https://doi.org/10.3390/photonics10060633
N.B. Fite, G.M. Wegari, H. Steendam, Integration of artificial neural network regression and principal component analysis for indoor visible light positioning. Sensors 25(4), 1049 (2025). https://doi.org/10.3390/s25041049
Y.H. Shu, Y.H. Chang, Y.Z. Lin, C.W. Chou, Real-time indoor visible light positioning (VLP) using long short term memory neural network (LSTM-NN) with principal component analysis (PCA). Sensors 24(16), 5424 (2024). https://doi.org/10.3390/s24165424
H.Q. Tran, C. Ha, Machine learning in indoor visible light positioning systems: a review. Neurocomputing 491, 117–131 (2022). https://doi.org/10.1016/j.neucom.2021.10.123
N. Chaudhary, O.I. Younus, L.N. Alves, Z. Ghassemlooy, S. Zvanovec, H. Le-Minh, An indoor visible light positioning system using tilted leds with high accuracy. Sensors 21(3), 920 (2021). https://doi.org/10.3390/s21030920
R. Liu, Z. Liang, Z. Wang, W. Li, Indoor visible light positioning based on improved whale optimization method with min-max algorithm. IEEE Trans. Instrum. Meas. 72, 1–10 (2023). https://doi.org/10.1109/TIM.2023.3240212
B. Hou, Y. Wang, RF-KELM indoor positioning algorithm based on WiFi RSS fingerprint. Meas. Sci. Technol. 35(4), 045004 (2024). https://doi.org/10.1088/1361-6501/ad1873
J. Bi, M. Zhao, G. Yao, H. Cao, Y. Feng, H. Jiang, D. Chai, PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO. Expert Syst. Appl. 222, 119778 (2023). https://doi.org/10.1016/j.eswa.2023.119778
I.M. Abou-Shehada, A.F. AlMuallim, A.W.K. AlFaqeh, A.H. Muqaibel, K.H. Park, M.S. Alouini, Accurate indoor visible light positioning using a modified pathloss model with sparse fingerprints. J. Lightwave Technol. 39(20), 6487–6497 (2021). https://doi.org/10.1109/JLT.2021.3098005
Y.C. Wu, K.L. Hsu, Y. Liu, C.Y. Hong, C.W. Chow, C.H. Yeh, X.L. Liao, K.H. Lin, Y.Y. Chen, Using linear interpolation to reduce the training samples for regression based visible light positioning system. IEEE Photonics J. 12(2), 1–5 (2020). https://doi.org/10.1109/JPHOT.2020.2975213
Y. Xing, Q. Song, G. Cheng, Benefit of interpolation in nearest neighbor algorithms. SIAM J. Math. Data Sci. 4(2), 935–956 (2020). https://doi.org/10.1137/21M1437457
Article MathSciNet Google Scholar
J. Hu, H. Liu, D. Liu, Z. Yan, K. Xu, Reducing Wi-Fi fingerprint collection based on affinity propagation clustering and WKNN interpolation algorithm. IMCEC (2018). https://doi.org/10.1109/IMCEC.2018.8469697
Comments (0)