Estimation of soil macro-nutrients using visible optical transmission spectroscopy

C. Dimkpa, P. Bindraban, J.E. McLean, L. Gatere, U. Singh, D. Hellums, Methods for rapid testing of plant and soil nutrients, in Sustainable Agriculture Reviews, ed. by E. Lichtfouse (Springer International Publishing, Cham, 2017), pp. 1–43. https://doi.org/10.1007/978-3-319-58679-3_1

Chapter  Google Scholar 

S.S. Dhaliwal, R.K. Naresh, A. Mandal, M.K. Walia, R.K. Gupta, R. Singh, M.K. Dhaliwal, Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. J. Plant Nutr. 42, 2873–2900 (2019). https://doi.org/10.1080/01904167.2019.1659337

Article  Google Scholar 

G. Nigam, V. Pandey, M. Tripathi, J. Sinha, Assessment of Macro and Micro Nutrients of Soil in a Small Agricultural Watershed. https://www.semanticscholar.org/paper/Assessment-of-Macro-and-Micro-Nutrients-of-Soil-in-Nigam-Pandey/ccf30775e196f1a640f7dd3c6add0cc7711380ae, last accessed 2024/08/16

R.K. Rattan, K.P. Patel, K.M. Manjaiah, S.P. Datta, Micronutrients in soil, plant, animal and human health. J. Indian Soc. Soil Sci. 57, 546–558 (2009)

Google Scholar 

M. Yokota, T. Okada, I. Yamaguchi, An optical sensor for analysis of soil nutrients by using LED light sources. Meas. Sci. Technol. 18, 2197–2201 (2007). https://doi.org/10.1088/0957-0233/18/7/052

Article  ADS  Google Scholar 

J. Chen, S.A. Barber, Soil pH and phosphorus and potassium uptake by maize evaluated with an uptake model. Soil. Sci. Soc. Amer J. 54, 1032–1036 (1990). https://doi.org/10.2136/sssaj1990.03615995005400040017x

Article  ADS  Google Scholar 

Van A. Diest, H.W. Jespersen, R.F. White, C.A. Black, Test of two methods for measuring a labile fraction of inorganic phosphorus in soils. Soil Sci. Soc. Am. J. 24, 498–502 (1960). https://doi.org/10.2136/sssaj1960.03615995002400060024x

Article  Google Scholar 

V.A. Haby, M.P. Russelle, E.O. Skogley, Testing soils for potassium, calcium, and magnesium, in SSSA Book Series, ed. by R.L. Westerman (Soil Science Society of America, Madison, WI, USA, 2018), pp. 181–227. https://doi.org/10.2136/sssabookser3.3ed.c8

Chapter  Google Scholar 

R. Mouhamad, A. Alsaede, M. Iqbal, Behavior of potassium in soil: a mini review. Chem. Int. 2, 58–69 (2016)

Google Scholar 

K. Mengel, E.A. Kirkby, H. Kosegarten, T. Appel, The soil as a plant nutrient medium. Principles of Plant Nutrition. 15–110. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-010-1009-2_2

Chapter  Google Scholar 

J. Müller, Dumas or Kjeldahl for Reference Analysis (Hilleroed, FOSS, 2017)

Google Scholar 

J. Liu, H. Cai, S. Chen, J. Pi, L. Zhao, A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture. 13, 743 (2023)

Google Scholar 

S.R. Olsen, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (US Department of Agriculture, 1954)

P. Banerjee, B. Prasad, Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl. Water Sci. 10, 113 (2020). https://doi.org/10.1007/s13201-020-01188-1

Article  ADS  Google Scholar 

R.P. Potdar, M.M. Shirolkar, A.J. Verma, P.S. More, A. Kulkarni, Determination of soil nutrients (NPK) using optical methods: a mini review. J. Plant Nutr. 44, 1826–1839 (2021). https://doi.org/10.1080/01904167.2021.1884702

Article  Google Scholar 

S. Dattatreya, A.N. Khan, K. Jena, G. Chatterjee, Conventional to modern methods of soil NPK sensing: A review. IEEE Sens. J. 24, 2367–2380 (2024). https://doi.org/10.1109/JSEN.2023.3334243

Article  ADS  Google Scholar 

B. Sethuramasamyraja, Development of on-the-go Soil Sensing Technology for Mapping Soil pH, Potassium and Nitrate Contents (The University of Nebraska-Lincoln, 2006)

J. Lin, M. Wang, M. Zhang, Y. Zhang, L. Chen, Electrochemical Sensors for Soil Nutrient Detection: Opportunity and Challenge. In: Li, D. (ed.) Computer And Computing Technologies In Agriculture, Volume II. pp. 1349–1353. Springer US, Boston, MA (2008). https://doi.org/10.1007/978-0-387-77253-0_77

F.M. Silva, C. Queirós, T. Pinho, J. Boaventura, F. Santos, T.G. Barroso, M.R. Pereira, M. Cunha, R.C. Martins, Reagent-less spectroscopy towards NPK sensing for hydroponics nutrient solutions. Sens. Actuators B 395, 134442 (2023)

Google Scholar 

D.E. McCoy, S.J. Donohue, Evaluation of commercial soil test kits for field use. Commun. Soil Sci. Plant Anal. (1979). https://doi.org/10.1080/00103627909366925

Article  Google Scholar 

M. Masrie, A.Z.M. Rosli, R. Sam, Z. Janin, M.K. Nordin, Integrated optical sensor for NPK Nutrient of Soil detection. In: 2018 IEEE 5th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA). pp. 1–4. IEEE, Songkla, Thailand (2018). https://doi.org/10.1109/ICSIMA.2018.8688794

E.W. Chappelle, J.E. McMurtrey, F.M. Wood, W.W. Newcomb, Laser-induced fluorescence of green plants 2: LIF caused by nutrient deficiencies in corn. Appl. Opt. 23, 139 (1984). https://doi.org/10.1364/AO.23.000139

Article  ADS  Google Scholar 

S. Mukherjee, S. Laskar, Vis–NIR-based optical sensor system for Estimation of primary nutrients in soil. J. Opt. 48, 87–103 (2019). https://doi.org/10.1007/s12596-019-00517-1

Article  Google Scholar 

X. Du, J. Wang, D. Dong, X. Zhao, Development and Testing of a Portable Soil Nitrogen Detector Based on Near-infrared Spectroscopy. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). pp. 822–826. IEEE, Chongqing, China (2019). https://doi.org/10.1109/ITAIC.2019.8785499

Photodiode Detectors - Thorlabs, https://www.thorlabs.com, last accessed 2024/09/18.

B. Stenberg, R.A.V. Rossel, A.M. Mouazen, J. Wetterlind, Visible and near infrared spectroscopy in soil science. Adv. Agron. 107, 163–215 (2010)

Google Scholar 

B. Kuang, A. Mouazen, Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture. Biosyst. Eng. 114, 249–258 (2013). https://doi.org/10.1016/j.biosystemseng.2013.01.005

Article  Google Scholar 

S.R. Dickman, R.H. Bray, Colorimetric determination of phosphate. Ind. Eng. Chem. Anal. Ed. 12, 665–668 (1940). https://doi.org/10.1021/ac50151a013

Article  Google Scholar 

L. Burton, K. Jayachandran, S. Bhansali, The Real-Time revolution for in situ soil nutrient sensing. J. Electrochem. Soc. 167, 037569 (2020)

ADS  Google Scholar 

M.L. Meade, Advances in lock-in amplifiers. J. Phys. E (1982)

J.H. Scofield, Frequency-domain description of a lock-in amplifier. Am. J. Phys. 62, 129–132 (1994)

ADS  Google Scholar 

P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank. IEEE Signal. Process. Lett. 11, 112–114 (2004). https://doi.org/10.1109/LSP.2003.821662

Article  ADS  Google Scholar 

P and K fertilizers| Department of Fertilizers, https://www.fert.nic.in/p-and-k-fertilizers, last accessed 2024/12/09.

CRC Handbook of Chemistry and Physics: A Ready-Reference of Chemical and Physical Data, 85th ed Edited by David R. Lide (National Institute of Standards and Technology). CRC Press LLC: Boca Raton, FL, 2004. 2712 pp. $139.99. ISBN 0-8493-0485-7. J. Am. Chem. Soc. 127, 4542–4542 (2005). https://doi.org/10.1021/ja041017a

G.H. Buchanan, G.B. Winner, The solubility of Mono- and diammonium phosphate. J. Ind. Eng. Chem. 12, 448–451 (1920). https://doi.org/10.1021/ie50125a012

Article  Google Scholar 

C. Morais, J.L. Araújo, An alternative experimental procedure to determine the solubility of potassium nitrate in water with automatic data acquisition using arduino for secondary school: development and validation with Pre-Service chemistry teachers. J. Chem. Educ. 100, 774–781 (2023). https://doi.org/10.1021/acs.jchemed.2c00615

Article  Google Scholar 

A.-O. Boudraa, J.-C. Cexus, Z. Saidi, EMD-Based signal noise reduction. Sig. Process. 1, (2005)

K.M. Yusof, S. Isaak, N.C. Abd Rashid, N.H. Ngajikin, NPK detection spectroscopy on Non-Agriculture soil. Jurnal Teknologi 78, (2016)

Deficiency of phyto, -available sulphur, zinc, boron, iron, copper and manganese in soils of India| Scientific Reports. https://www.nature.com/articles/s41598-021-99040-2?utm_source=chatgpt.com, last accessed 2025/06/12

Full article, Trace determination of zinc in soil and vegetable samples by spectrophotometry using pyridoxal thiosemicarbazone and 2-acetyl pyridine thiosemicarbazone. https://www.tandfonline.com/doi/full/10.1080/23312009.2016.1249602?utm_source=chatgpt.com

D. Admasu, D.N. Reddy, K.N. Mekonnen, Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha atsbeha, tigray, Ethiopia using heterocyclic thiosemicarbazone. Springerplus. 5, 1169 (2016). https://doi.org/10.1186/s40064-016-2848-3

Article  Google Scholar 

E. Murgueitio-Herrera, C.E. Falconí, L. Cumbal, J. Gómez, K. Yanchatipán, A. Tapia, K. Martínez, I. Sinde-Gonzalez, T. Toulkeridis, Synthesis of iron, zinc, and manganese nanofertilizers, using Andean blueberry extract, and their effect in the growth of cabbage and lupin plants. Nanomaterials. 12, 1921 (2022)

Google Scholar 

Check this reference Manley: Near-infrared spectroscopy and hyperspectral… Google Scholar, https://scholar.google.com/scholar_lookup?&title=Near-infrared%20spectroscopy%20and%20hyperspectral%20imaging%3A%20non-destructive%20analysis%20of%20biological%20materials&journal=Chem.%20Soc.%20Rev.&doi=10.1039%2FC4CS00062E&volume=43&issue=24&pages=8200-8214&publication_year=2014&author=Manley%2CM,last accessed 2024/12/10.

S. Ganesh, F. Khan, M.K. Ahmed, P. Velavendan, N.K. Pandey, U.K. Mudali, Developed new procedure for low concentrations of hydrazine determination by spectrophotometry: hydrazine-Potassium permanganate system. JASMI. 02, 98–102 (2012). https://doi.org/10.4236/jasmi.2012.22018

Article  Google Scholar 

S.T. McBeath, D.P. Wilkinson, N.J.D. Graham, Analytical quantification of aqueous permanganate: direct and indirect spectrophotometric determination for water treatment processes. Chemosphere. 251, 126626 (2020). https://doi.org/10.1016/j.chemosphere.2020.126626

Article  Google Scholar 

A. Nuhu, M. Sallau, B. Tukur, Fixed sized simplex optimization of spectrophotometric method for the quantitative determination of diclofenac in pharmaceutical preparations. Int. J. Adv. Res. 3, 234–245 (2015)

Google Scholar 

X. Ai, L. Li, X. Zhou, Z. Zhang, A monitoring method for sulfate based on ultraviolet absorption spectroscopy dedicated to SO3 monitoring in coal-fired power plants. Chem. Phys. Lett. 780, 138935 (2021). https://doi.org/10.1016/j.cplett.2021.138935

Article  Google Scholar 

J. Dong, J. Tang, G. Wu, R. Li, A Turbidity-Compensation method for nitrate measurement based on ultraviolet difference spectroscopy. Molecules. 28, 250 (2023). https://doi.org/10.3390/molecules28010250

Article  Google Scholar 

Z. Haghparas, Z. Kordrostami, M. Sorouri, M. Rajabzadeh, R. Khalifeh, Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled Hollow nanoporous cuo/zno microstructures. Sci. Rep. 11, 344 (2021)

Google Scholar 

N. Liu, Z. Wei, H. Wei, Colorimetric detection of nitrogen, phosphorus, and potassium contents and integration into field irrigation decision technology. IOP Conference Series: Earth and Environmental Science. 651, 042044 (2021). https://doi.org/10.1088/1755-1315/651/4/042044

Y. Xu, P. Zhou, T. Simon, T. Cui, Ultra-sensitive nitrate-ion detection via transconductance-enhanced graphene ion-sensitive field-effect transistors. Microsystems Nanoengineering. 10, 137 (2024)

Google Scholar 

S. Tatli, E. Mirzaee-Ghaleh, H. Rabbani, H. Karami, A.D. Wilson, Prediction of residual Npk levels in crop fruits by electronic-nose voc analysis following application of multiple fertilizer rates. Appl. Sci. 12, 11263 (2022)

Google Scholar 

Y. Peng, L. Wang, L. Zhao, Z. Liu, C. Lin, Y. Hu, L. Luo, Estimation of soil nutrient content using hyperspectral

Comments (0)

No login
gif