A fully automated deep learning framework for age estimation in adults using periapical radiographs of canine teeth

Franklin D (2010) Forensic age estimation in human skeletal remains: Current concepts and future directions. Leg Med 12(1):1–7. https://doi.org/10.1016/j.legalmed.2009.09.001

Article  Google Scholar 

Ubelaker DH, Khosrowshahi H (2019) Estimation of age in forensic anthropology: historical perspective and recent methodological advances. Forensic Sci Res 4(1):1–https://doi.org/10.1080/20961790.2018.1549711

Vila-Blanco N, Varas-Quintana P, Tomás I et al (2023) A systematic overview of dental methods for age assessment in living individuals: from traditional to artificial intelligence-based approaches. Int J Legal Med 137(4):1117–114. https://doi.org/10.1007/s00414-023-02960-z

Article  PubMed  PubMed Central  Google Scholar 

Verma M, Verma N, Sharma R et al (2019) Dental age estimation methods in adult dentitions: An overview. J Forensic Dent Sci 11(2):57–63. https://doi.org/10.4103/jfo.jfds_64_19

Article  PubMed  Google Scholar 

Gustafson G (1950) Age determinations on teeth. J Am Dent Assoc 41(1):45–5https://doi.org/10.14219/jada.archive.1950.0132

Ritz S, Stock R, Schütz HW et al (1995) Age estimation in biopsy specimens of dentin. Int J Legal Med 108(3):135–13. https://doi.org/10.1007/bf01844824

Article  PubMed  CAS  Google Scholar 

Kvaal SI, Kolltveit KM, Thomsen IO et al (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74(3):175–185. https://doi.org/10.1016/0379-0738(95)01760-g

Article  PubMed  CAS  Google Scholar 

Bosmans N, Ann P, Aly M et al (2005) The application of kvaal’s dental age calculation technique on panoramic dental radiographs. Forensic Sci Int 153(2–3):208–21. https://doi.org/10.1016/j.forsciint.2004.08.017

Article  PubMed  Google Scholar 

Cameriere R, Ferrante L, Cingolani M (2004) Variations in pulp/tooth area ratio as an indicator of age: a preliminary study. J Forensic Sci 49(2):1–3. https://doi.org/10.1520/jfs2003259

Article  Google Scholar 

Cameriere R, De Luca S, Alemán I et al (2012) Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci Int 214(1–3):105–11. https://doi.org/10.1016/j.forsciint.2011.07.028

Article  PubMed  Google Scholar 

Cameriere R, Ferrante L, Belcastro MG et al (2006) Age estimation by pulp/tooth ratio in canines by peri-apical x-rays. J Forensic Sci 52(1):166–17. https://doi.org/10.1111/j.1556-4029.2006.00336.x

Article  Google Scholar 

Jagannathan N, Neelakantan P, Thiruvengadam C et al (2011) Age estimation in an indian population using pulp/tooth volume ratio of mandibular canines obtained from cone beam computed tomography. J Forensic Odontostomatol 29(1):1–6

PubMed  PubMed Central  CAS  Google Scholar 

Ge Zp, Ma Rh, Li G, et al (2015) Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci Int 253:133.e1–133.ehttps://doi.org/10.1016/j.forsciint.2015.05.004

Saric R, Kevric J, Hadziabdic N et al (2022) Dental age assessment based on cbct images using machine learning algorithms. Forensic Sci Int 334:111245. https://doi.org/10.1016/j.forsciint.2022.111245

Article  PubMed  Google Scholar 

Pintana P, Upalananda W, Saekho S et al (2022) Fully automated method for dental age estimation using the acf detector and deep learning. Egypt J Forensic Sci 12(1):5. https://doi.org/10.1186/s41935-022-00314-1

Article  Google Scholar 

Fan F, Ke W, Dai X et al (2023) Semi-supervised automatic dental age and sex estimation using a hybrid transformer model. Int J Legal Med 137(3):721–73. https://doi.org/10.1007/s00414-023-02956-9

Article  PubMed  Google Scholar 

Bussaban L, Boonchieng E, Panyarak W et al (2024) Age group classification from dental panoramic radiographs using deep learning techniques. IEEE Access 12:139962–13997. https://doi.org/10.1109/access.2024.3466953

Article  Google Scholar 

Park SJ, Yang S, Kim JM et al (2024) Automatic and robust estimation of sex and chronological age from panoramic radiographs using a multi-task deep learning network: a study on a south korean population. Int J Legal Med 138(4):1741–175. https://doi.org/10.1007/s00414-024-03204-4

Article  PubMed  PubMed Central  Google Scholar 

Tzutalin D (2015) Labelimg. URL https://github.com/HumanSignal/labelImg

Jocher G, Chaurasia A, Qiu J (2023) Ultralytics yolov8. URL https://github.com/ultralytics/ultralytics

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–77https://doi.org/10.1109/CVPR.2016.90

Huang G, Liu Z, Van Der Maaten L, et al (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2261–226https://doi.org/10.1109/CVPR.2017.243

Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 6105–6114, URL https://proceedings.mlr.press/v97/tan19a.html

Howard A, Sandler M, Chen B, et al (2019) Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp 1314–1324,https://doi.org/10.1109/ICCV.2019.00140

Prajapati G, Sarode SC, Sarode GS et al (2018) Role of forensic odontology in the identification of victims of major mass disasters across the world: A systematic review. PLoS One 13(6):e0199791. https://doi.org/10.1371/journal.pone.0199791

Article  PubMed  PubMed Central  CAS  Google Scholar 

Forrest A (2019) Forensic odontology in dvi: current practice and recent advances. Forensic Sci Res 4(4):316–330. https://doi.org/10.1080/20961790.2019.1678710

Article  PubMed  PubMed Central  Google Scholar 

de Araújo PSP, Pinto PHV, da Silva RHA (2023) Age estimation in adults by canine teeth: a systematic review of the cameriere method with meta-analysis on the reliability of the pulp/tooth area ratio. Int J Legal Med 138(2):451–46. https://doi.org/10.1007/s00414-023-03110-1

Article  PubMed  Google Scholar 

Babshet M, Acharya AB, Naikmasur VG (2010) Age estimation in indians from pulp/tooth area ratio of mandibular canines. Forensic Sci Int 197(1–3):125.e1–125.ehttps://doi.org/10.1016/j.forsciint.2009.12.065

Babshet M, Acharya AB, Naikmasur VG (2011) Age estimation from pulp/tooth area ratio (ptr) in an indian sample: A preliminary comparison of three mandibular teeth used alone and in combination. J Forensic Leg Med 18(8):350–354. https://doi.org/10.1016/j.jflm.2011.07.003

Article  PubMed  Google Scholar 

De Luca S, Bautista J, Alemán I et al (2011) Age-at-death estimation by pulp/tooth area ratio in canines: Study of a 20th-century mexican sample of prisoners to test cameriere’s method: Age-at-death estimation by pulp/tooth area ratio in canines. J Forensic Sci 56(5):1302–1309. https://doi.org/10.1111/j.1556-4029.2011.01784.x

Article  PubMed  Google Scholar 

Cameriere R, Cunha E, Sassaroli E et al (2009) Age estimation by pulp/tooth area ratio in canines: Study of a portuguese sample to test cameriere’s method. Forensic Sci Int 193(1–3):128.e1-128.e6. https://doi.org/10.1016/j.forsciint.2009.09.011

Article  PubMed  CAS  Google Scholar 

Azevedo ACS, Alves NZ, Michel-Crosato E, et al (2015) Dental age estimation in a brazilian adult population using cameriere’s method. Braz Oral Res 29(1):1–https://doi.org/10.1590/1807-3107bor-2015.vol29.0016

Miranda JC, Azevedo ACS, Rocha M et al (2020) Age estimation in brazilian adults by kvaal’s and cameriere’s methods. Braz Oral Res 34:e051. https://doi.org/10.1590/1807-3107bor-2020.vol34.0051

Article  PubMed  Google Scholar 

Cameriere R, De Luca S, Soriano Vázquez I et al (2020) A full bayesian calibration model for assessing age in adults by means of pulp/tooth area ratio in periapical radiography. Int J Legal Med 135(2):677–685. https://doi.org/10.1007/s00414-020-02438-2

Article  PubMed  Google Scholar 

Beser B, Reis T, Berber MN et al (2024) Yolo-v5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition. BMC Med Imaging 24(1):17. https://doi.org/10.1186/s12880-024-01338-w

Article  Google Scholar 

Putra RH, Astuti ER, Putri DK et al (2024) Automated permanent tooth detection and numbering on panoramic radiograph using a deep learning approach. Oral Surg Oral Med Oral Pathol Oral Radiol 137(5):537–544. https://doi.org/10.1016/j.oooo.2023.06.003

Article  PubMed  Google Scholar 

Chen H, Zhang K, Lyu P et al (2019) A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep 9(1):384. https://doi.org/10.1038/s41598-019-40414-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Upalananda W, Prapayasatok S, Na Lampang S, et al (2023) The influence of integrating sex as a feature in deep learning-based dental age estimation using panoramic radiographs. In: Proceedings of the 2023 15th Biomedical Engineering International Conference (BMEiCON), pp 1–5,https://doi.org/10.1109/BMEiCON60347.2023.10321974

Milošević D, Vodanović M, Galić I et al (2022) Automated estimation of chronological age from panoramic dental x-ray images using deep learning. Expert Syst Appl 189:11603. https://doi.org/10.1016/j.eswa.2021.116038

Article  Google Scholar 

Vila-Blanco N, Carreira MJ, Varas-Quintana P et al (2020) Deep neural networks for chronological age estimation from opg images. IEEE Trans Med Imaging 39(7):2374–238. https://doi.org/10.1109/tmi.2020.2968765

Article 

Comments (0)

No login
gif