mutation-related clonal hematopoiesis and age-related diseases: clinical evidence and molecular insights

Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. https://doi.org/10.1056/NEJMoa1408617.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8. https://doi.org/10.1038/nm.3733.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal Hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. https://doi.org/10.1056/NEJMoa1409405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silver AJ, Bick AG, Savona MR. Germline risk of clonal haematopoiesis. Nat Rev Genet. 2021;22:603. https://doi.org/10.1038/S41576-021-00356-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21. https://doi.org/10.1056/NEJMoa1701719.

Article  PubMed  PubMed Central  Google Scholar 

Bonnefond A, Skrobek B, Lobbens S, Eury E, Thuillier D, Cauchi S, et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet. 2013;45:1040–3. https://doi.org/10.1038/ng.2700.

Article  CAS  PubMed  Google Scholar 

Cumbo C, Tarantini F, Zagaria A, Anelli L, Minervini CF, Coccaro N, et al. Clonal hematopoiesis at the crossroads of inflammatory bowel diseases and hematological malignancies: a biological link? Front Oncol. 2022;12:1. https://doi.org/10.3389/FONC.2022.873896.

Article  Google Scholar 

Agrawal M, Niroula A, Cunin P, McConkey M, Shkolnik V, Kim PG, et al. TET2 -mutant clonal hematopoiesis and risk of gout. Blood. 2022;140:1094–103. https://doi.org/10.1182/blood.2022015384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong WJ, Emdin C, Bick AG, Zekavat SM, Niroula A, Pirruccello JP, et al. Clonal haematopoiesis and risk of chronic liver disease. Nature. 2023;616(7958):747–54. https://doi.org/10.1038/s41586-023-05857-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hecker JS, Hartmann L, Rivière J, Buck MC, van der Garde M, Rothenberg-Thurley M, et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood. 2021;138:1727–32. https://doi.org/10.1182/blood.2020010163.

Article  CAS  PubMed  Google Scholar 

Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017. https://doi.org/10.1016/j.stem.2017.07.010.

Article  PubMed  PubMed Central  Google Scholar 

Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020;52:1219–26. https://doi.org/10.1038/s41588-020-00710-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–47. https://doi.org/10.1182/blood-2016-01-636381.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47. https://doi.org/10.1056/NEJMoa1414799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawashima N, Gurnari C, Bravo-Perez C, Kubota Y, Pagliuca S, Guarnera L, et al. Clonal hematopoiesis in large granular lymphocytic leukemia. Leukemia. 2024;2024:1–9. https://doi.org/10.1038/s41375-024-02460-y.

Article  CAS  Google Scholar 

Debureaux PE, Poulain S, Harel S, Passet M, Templé M, Friedrich C, et al. Inflammatory Waldenström macroglobulinemia is associated with clonal hematopoiesis: a multicentric cohort. Blood. 2024. https://doi.org/10.1182/BLOOD.2024025738.

Article  Google Scholar 

Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 1979;2017(355):842–7. https://doi.org/10.1126/science.aag1381.

Article  CAS  Google Scholar 

Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res. 2018;123:335–41. https://doi.org/10.1161/CIRCRESAHA.118.313225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rauch PJ, Gopakumar J, Silver AJ, Nachun D, Ahmad H, McConkey M, et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nature Cardiovasc Res. 2023;2(9):805–18. https://doi.org/10.1038/s44161-023-00326-7.

Article  CAS  Google Scholar 

Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586:763–8. https://doi.org/10.1038/s41586-020-2819-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Divaris K, Pan B, Li X, Lim JH, Saha G, et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell. 2024;187:3690-3711.e19. https://doi.org/10.1016/J.CELL.2024.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abplanalp WT, Cremer S, John D, Hoffmann J, Schuhmacher B, Merten M, et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ Res. 2021;128:216–28. https://doi.org/10.1161/CIRCRESAHA.120.317104/SUPPL_FILE/CIRCRES_CIRCRES-2020-317104_SUPP9.XLSX.

Article  CAS  PubMed  Google Scholar 

Chen T-C, Hou H-A, Chou W-C, Tang J-L, Kuo Y-Y, Chen C-Y, et al. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J. 2014;4(1):e177–e177. https://doi.org/10.1038/bcj.2013.74.

Article  PubMed  PubMed Central  Google Scholar 

Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ, et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia. 2010;24(5):1062–5. https://doi.org/10.1038/leu.2010.20.

Article  CAS  PubMed  Google Scholar 

Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7. https://doi.org/10.1038/leu.2013.336.

Article  CAS  PubMed  Google Scholar 

Papaemmanuil E, Consortium on behalf of the CMD working group of the ICG, Gerstung M, Consortium on behalf of the CMD working group of the ICG, Malcovati L, Consortium on behalf of the CMD working group of the ICG, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27. https://doi.org/10.1182/BLOOD-2013-08-518886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506. https://doi.org/10.1056/NEJMOA1013343/SUPPL_FILE/NEJMOA1013343_DISCLOSURES.PDF.

Comments (0)

No login
gif