Expression profiling of Epstein–Barr virus-derived microRNA in systemic chronic active EBV disease

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–48.

PubMed  PubMed Central  Google Scholar 

Sugaya N, Kimura H, Hara S, Hoshino Y, Kojima S, Morishima T, et al. Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with chronic active EBV infection. J Infect Dis. 2004;190(5):985–8.

PubMed  Google Scholar 

Shibayama H, Imadome KI, Onozawa E, Tsuzura A, Miura O, Koyama T, et al. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection. Rinsho Ketsueki. 2017;58(6):583–8.

PubMed  Google Scholar 

Sekinaka Y, Mitsuiki N, Imai K, Yabe M, Yabe H, Mitsui-Sekinaka K, et al. Common variable immunodeficiency caused by FANC mutations. J Clin Immunol. 2017;37(5):434–44.

CAS  PubMed  Google Scholar 

Katano H, Ali MA, Patera AC, Catalfamo M, Jaffe ES, Kimura H, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood. 2004;103(4):1244–52.

CAS  PubMed  Google Scholar 

Tanita K, Hoshino A, Imadome KI, Kamiya T, Inoue K, Okano T, et al. Epstein-Barr virus-associated γδ T-cell lymphoproliferative disorder associated with hypomorphic IL2RG mutation. Front Pediatr. 2019;7:15.

PubMed  PubMed Central  Google Scholar 

Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med. 2019;216(12):2800–18.

CAS  PubMed  PubMed Central  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

CAS  PubMed  PubMed Central  Google Scholar 

Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051723.

Article  PubMed  PubMed Central  Google Scholar 

Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in cellular metabolism and immune responses. Front Microbiol. 2017;8:1318.

PubMed  PubMed Central  Google Scholar 

Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The function and therapeutic potential of Epstein-Barr virus-encoded microRNAs in cancer. Mol Ther Nucleic Acids. 2019;17:657–68.

CAS  PubMed  PubMed Central  Google Scholar 

Marquitz AR, Mathur A, Nam CS, Raab-Traub N. The Epstein-Barr virus BART microRNAs target the pro-apoptotic protein Bim. Virology. 2011;412(2):392–400.

CAS  PubMed  Google Scholar 

Vereide DT, Seto E, Chiu YF, Hayes M, Tagawa T, Grundhoff A, et al. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene. 2014;33(10):1258–64.

CAS  PubMed  Google Scholar 

Higuchi H, Yamakawa N, Imadome KI, Yahata T, Kotaki R, Ogata J, et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood. 2018;131(23):2552–67.

CAS  PubMed  Google Scholar 

Kawano Y, Iwata S, Kawada J, Gotoh K, Suzuki M, Torii Y, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis. 2013;208(5):771–9.

CAS  PubMed  Google Scholar 

Zhang Y, Nagata H, Ikeuchi T, Mukai H, Oyoshi MK, Demachi A, et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br J Haematol. 2003;121(5):805–14.

PubMed  Google Scholar 

Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119(3):673–86.

CAS  PubMed  Google Scholar 

Yonese I, Sakashita C, Imadome KI, Kobayashi T, Yamamoto M, Sawada A, et al. Nationwide survey of systemic chronic active EBV infection in Japan in accordance with the new WHO classification. Blood Adv. 2020;4(13):2918–26.

CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto M, Sato M, Onishi Y, Sasahara Y, Sano H, Masuko M, et al. Registry data analysis of hematopoietic stem cell transplantation on systemic chronic active Epstein-Barr virus infection patients in Japan. Am J Hematol. 2022;97(6):780–90.

CAS  PubMed  Google Scholar 

Yoshimori M, Shibayama H, Imadome KI, Kawano F, Ohashi A, Nishio M, et al. Antineoplastic and anti-inflammatory effects of bortezomib on systemic chronic active EBV infection. Blood Adv. 2021;5(7):1805–15.

CAS  PubMed  PubMed Central  Google Scholar 

Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, et al. Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol. 1999;37(1):132–6.

CAS  PubMed  PubMed Central  Google Scholar 

Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47(6):883–9.

CAS  PubMed  Google Scholar 

Kubota N, Wada K, Ito Y, Shimoyama Y, Nakamura S, Nishiyama Y, et al. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection. J Virol Methods. 2008;147(1):26–36.

CAS  PubMed  Google Scholar 

Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T, et al. Microrna profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS ONE. 2012;7(8): e42193.

CAS  PubMed  PubMed Central  Google Scholar 

Okuno Y, Murata T, Sato Y, Muramatsu H, Ito Y, Watanabe T, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404–13.

CAS  PubMed  Google Scholar 

Wongwiwat W, Fournier B, Bassano I, Bayoumy A, Elgueta Karstegl C, Styles C, et al. Epstein-Barr virus genome deletions in Epstein-Barr virus-positive T/NK cell lymphoproliferative diseases. J Virol. 2022;96(12): e0039422.

PubMed  Google Scholar 

Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15(9):1640–51.

CAS  PubMed  PubMed Central  Google Scholar 

Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33(1):254–63.

CAS  PubMed  Google Scholar 

Yu X, McCarthy PJ, Wang Z, Gorlen DA, Mertz JE. Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein-Barr virus. J Virol. 2012;86(15):8086–96.

CAS  PubMed  PubMed Central  Google Scholar 

Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, et al. An Epstein-Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 2012;86(15):7976–87.

CAS  PubMed  PubMed Central  Google Scholar 

Tsai MH, Raykova A, Klinke O, Bernhardt K, Gärtner K, Leung CS, et al. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep. 2013;5(2):458–70.

CAS  PubMed  Google Scholar 

Chan JY, Gao W, Ho WK, Wei WI, Wong TS. Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res. 2012;32(8):3201–10.

PubMed  Google Scholar 

Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic roles of Epstein-Barr virus-encoded microRNAs in human lymphomas. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19041168.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Guo Z, Shu Y, Zhou H, Wang H, Zhang W. BART miRNAs: an unimaginable force in the development of nasopharyngeal carcinoma. Eur J Cancer Prev. 2017;26(2):144–50.

CAS  PubMed  PubMed Central  Google Scholar 

Arai A. Chronic active Epstein-Barr virus infection: a bi-faceted disease with inflammatory and neoplastic elements. Immunol Med. 2018;41(4):162–9.

PubMed  Google Scholar 

Yoshimori M, Nishio M, Ohashi A, Tateishi M, Mimura A, Wada N, et al. Interferon-γ produced by EBV-positive neoplastic NK-cells induces differe

Comments (0)

No login
gif