Hypoxia Aggravates Myocardial Ischemia/Reperfusion Injury Through the Promotion of Ferroptosis via ACSL4 Lactylation

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association. Circulation. 2022;145:e153–639.

Article  PubMed  Google Scholar 

Veltman D, Wu M, Pokreisz P, et al. Clec4e-receptor signaling in myocardial repair after ischemia-reperfusion injury. JACC: Basic to Translational Science. 2021;6:631–46.

PubMed  PubMed Central  Google Scholar 

Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.

Article  PubMed  Google Scholar 

Ma L, Zou R, Shi W, et al. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics. 2022;12:5034–50.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:560–75.

Article  PubMed  CAS  Google Scholar 

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

Article  PubMed  PubMed Central  Google Scholar 

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

Article  PubMed  CAS  Google Scholar 

Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11:3052–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Nat Acad Sci - PNAS. 2019;116:2672–80.

Article  PubMed  CAS  Google Scholar 

Feng Y, Madungwe NB, Imam AA, et al. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 2019;520:606–11.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pan Y, Wang X, Liu X, et al. Targeting ferroptosis as a promising therapeutic strategy for ischemia-reperfusion injury. Antioxidants. 2022;11:2196.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang F, Li Z, Gao P, et al. HJ11 decoction restrains development of myocardial ischemia-reperfusion injury in rats by suppressing ACSL4-mediated ferroptosis. Front Pharmacol. 2022;13:1024292.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fan Z, Cai L, Wang S, et al. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 2021;12:628988.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature (London). 2019;574:575–80.

Article  PubMed  CAS  Google Scholar 

Jin M, Cao W, Chen B, et al. Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front Cell Dev Biol. 2022;10:808859.

Article  PubMed  PubMed Central  Google Scholar 

Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 2023;14:1284344.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fan M, Yang K, Wang X, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 2023;9:c9465.

Article  Google Scholar 

Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022;131:893–908.

Article  PubMed  CAS  Google Scholar 

Yu W, Kong Q, Jiang S, et al. HSPA12A maintains aerobic glycolytic homeostasis and Histone3 lactylation in cardiomyocytes to attenuate myocardial ischemia/reperfusion injury. JCI Insight. 2024. https://doi.org/10.1172/jci.insight.169125.

Article  PubMed  PubMed Central  Google Scholar 

Chen W, Zhang Y, Wang Z, et al. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front Pharmacol. 2023;14:1078205.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu S, Wu B, Zhong B, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /system xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12:10924–34.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang CX, Cheng Y, Liu DZ, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 2019;17: 18.

Article  PubMed  PubMed Central  Google Scholar 

Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 2019;73:89–99.

Article  PubMed  Google Scholar 

Wang C, Chen J, Wang M, et al. Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress. Biochem Biophys Res Commun. 2021;566:190–6.

Article  PubMed  CAS  Google Scholar 

Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochimica et Biophysica Acta (BBA). 2020;1866: 165768.

Article  CAS  Google Scholar 

Cai W, Liu L, Shi X, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation. 2023;147:1444–60.

Article  PubMed  CAS  Google Scholar 

Wang Z, Yao M, Jiang L, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3beta/Nrf2 axis. Biomed Pharmacother. 2022;154:113572.

Article  PubMed  CAS  Google Scholar 

Tian Q, Zhou L. Lactate activates germline and cleavage embryo genes in mouse embryonic stem cells. Cells. 2022;11: 548.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang Q, Liu J, Wang Y, et al. A proteomic atlas of ligand–receptor interactions at the ovine maternal–fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem. 2022;298: 101456.

Article  PubMed  CAS  Google Scholar 

Chu X, Di C, Chang P, et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 2022;12:786666.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif