Murayama Y, Takao H, Ishibashi T, Saguchi T, Ebara M, Yuki I, Arakawa H, Irie K, Urashima M, Molyneux AJ. Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study. Stroke. 2016;47(2):365–71.
Investigators UJ. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366(26):2474–82.
Ahn J-M, Oh J-S, Yoon S-M, Shim J-H, Oh H-J, Bae H-G. Procedure-related complications during endovascular treatment of intracranial saccular aneurysms. J Cerebrovasc Endovasc Neurosurg. 2017;19(3):162–70.
Article PubMed PubMed Central Google Scholar
Chalouhi N, Zanaty M, Whiting A, Yang S, Tjoumakaris S, Hasan D, Starke RM, Hann S, Hammer C, Kung D, et al. Safety and efficacy of the pipeline embolization device in 100 small intracranial aneurysms. J Neurosurg. 2015;122(6):1498–502.
Molyneux AJ, Birks J, Clarke A, Sneade M, Kerr RS. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the uk cohort of the international subarachnoid aneurysm trial (isat). Lancet. 2015;385(9969):691–7.
Article PubMed PubMed Central Google Scholar
Kotowski M, Naggara O, Darsaut TE, Nolet S, Gevry G, Kouznetsov E, Raymond J. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of the literature from 1990 to 2011. J Neurol Neurosurg Psychiatry. 2013;84(1):42–8.
Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.
Sunderland K, Jiang J, Zhao F. Disturbed flow’s impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: a pathological and methodological review. J Cell Physiol. 2022;237(1):278–300.
Article CAS PubMed Google Scholar
Balaguru UM, Sundaresan L, Manivannan J, Majunathan R, Mani K, Swaminathan A, Venkatesan S, Kasiviswanathan D, Chatterjee S. Disturbed flow mediated modulation of shear forces on endothelial plane: a proposed model for studying endothelium around atherosclerotic plaques. Sci Rep. 2016;6(1):27304.
Article CAS PubMed PubMed Central Google Scholar
Jou L-D, Quick CM, Young WL, Lawton MT, Higashida R, Martin A, Saloner D. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. Am J Neuroradiol. 2003;24(9):1804–10.
PubMed PubMed Central Google Scholar
Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol. 2003;24(4):559–66.
PubMed PubMed Central Google Scholar
Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42(1):144–52.
Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M, Hamzei-Sichani F, Kallmes D, Putman C, Jimenez C, Cebral JR. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochir. 2018;160:1643–52.
Kim HC, Rhim JK, Ahn JH, Park JJ, Moon JU, Hong EP, Kim MR, Kim SG, Lee SH, Jeong JH, et al. Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J Clin Med. 2019;8(5):683.
Article PubMed PubMed Central Google Scholar
Tanioka S, Ishida F, Yamamoto A, Shimizu S, Sakaida H, Toyoda M, Kashiwagi N, Suzuki H. Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiol Artif Intell. 2020;2(1):190077.
Jiang J, Rezaeitaleshmahalleh M, Lyu Z, Mu N, Ahmed A, Md C, Gemmete J, Pandey A. Augmenting prediction of intracranial aneurysms’ risk status using velocity-informatics: initial experience. J Cardiovasc Transl Res. 2023;1–13.
Sunderland K, Wang M, Pandey A, Gemmete J, Huang Q, Goudge A, Jiang J. Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms. Acta Neurochir. 2021;163:2339–49.
Article CAS PubMed Google Scholar
Jiang J, Rezaeitaleshmahalleh M, Tang J, Gemmette J, Pandey A. Improving rupture status prediction for intracranial aneurysms using wall shear stress informatics. Acta Neurochir. 2025;15. https://doi.org/10.1007/s00701-024-06404-4.
Rezaeitaleshmahalleh M, Lyu Z, Mu N, Nainamalai V, Tang J, Gemmete J, Pandey A, Jiang J. Improving prediction of intracranial aneurysm rupture status using temporal velocity-informatics. Ann Biomed Eng. 2025;1–18.
Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Med Image Anal. 2023;84:102697. https://doi.org/10.1016/j.media.2022.102697.
Mu N, Lyu Z, Zhang X, McBane R, Pandey AS, Jiang J. Exploring a frequency-domain attention-guided cascade u-net: towards spatially tunable segmentation of vasculature. Comput Biol Med. 2023;167:107648. https://doi.org/10.1016/j.compbiomed.2023.107648.
Article PubMed PubMed Central Google Scholar
Obiols-Sales O, Vishnu A, Malaya N, Chandramowliswharan A. Cfdnet: A deep learning-based accelerator for fluid simulations. In: Proceedings of the 34th ACM International Conference on Supercomputing. ICS ’20. Association for Computing Machinery, New York, NY, USA. 2020. https://doi.org/10.1145/3392717.3392772.
Moser P, Fenz W, Thumfart S, Ganitzer I, Giretzlehner M. Modeling of 3d blood flows with physics-informed neural networks: comparison of network architectures. Fluids. 2023;8(2). https://doi.org/10.3390/fluids8020046.
Castro M, Putman C, Cebral J. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. Am J Neuroradiol. 2006;27(10):2061–8.
CAS PubMed PubMed Central Google Scholar
Rezaeitaleshmahalleh M, Lyu Z, Mu N, Zhang X, Rasmussen TE, McBane RD, Jiang J. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Sci Rep. 2023;13(1):13832.
Article CAS PubMed PubMed Central Google Scholar
Jiang J, Johnson K, Valen-Sendstad K, Mardal K-A, Wieben O, Strother C. Flow characteristics in a canine aneurysm model: A comparison of 4d accelerated phase-contrast mr measurements and computational fluid dynamics simulations. Med Phys. 2011;38(11):6300–12. https://doi.org/10.1118/1.3652917. https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.3652917.
Jiang J, Strother C, Johnson K, Baker S, Consigny D, Wieben O, Zagzebski J. Comparison of blood velocity measurements between ultrasound doppler and accelerated phase-contrast mr angiography in small arteries with disturbed flow. Phys Med Biol. 2011;56(6):1755. https://doi.org/10.1088/0031-9155/56/6/015.
Article PubMed PubMed Central Google Scholar
Jain K, Jiang J, Strother C, Mardal K-A. Transitional hemodynamics in intracranial aneurysms — comparative velocity investigations with high resolution lattice boltzmann simulations, normal resolution ansys simulations, and mr imaging. Med Phys. 2016;43(11):6186–98. https://doi.org/10.1118/1.4964793. https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.4964793.
Rezaeitaleshmahalleh M, Lyu Z, Mu N, Jiang J. Using convolutional neural network-based segementation for imaging-based computational fluid dynamics simulations of brain aneurysms: Intitial experience in automated model creation. J Mech Med Biol. 2023;23(4):2340055. https://doi.org/10.1142/s0219519423400559.
Article PubMed PubMed Central Google Scholar
Lyu Z, King K, Rezaeitaleshmahalleh M, Pienta D, Mu N, Zhao C, Zhou W, Jiang J. Deep-learning-based image segmentation for image-based computational hemodynamic analysis of abdominal aortic aneurysms: a comparison study. Biomed Phys Eng Express. 2023;9(6):067001. https://doi.org/10.1088/2057-1976/acf3ed.
Sunderland K, Jiang J. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery. Med Eng Phys. 2019;74:129–36.
Article CAS PubMed Google Scholar
Ashgriz N. An introduction to computational fluid dynamics. McGraw-Hill Education, 2002. Chap. 24. https://www.accessengineeringlibrary.com/content/book/9780071363723/chapter/chapter24. Accessed 12 Dec 2023.
Gwilliam MN, Hoggard N, Capener D, Singh P, Marzo A, Verma PK, Wilkinson ID. Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J Cereb Blood Flow Metab. 2009;29(12):1975–82.
Jiang J, Strother CM. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with patient-specific computational fluid dynamics (cfd) simulations. IEEE Trans Med Imaging. 2012;32(2):153–64.
Leopardi P. A partition of the unit sphere into regions of equal area and small diameter. Electron Trans Numer Anal. 2006;25(12):309–27.
Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):104–7.
Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.
Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process. 1975;4(2):172–9.
Comments (0)