Machine Learning-based Prediction of Temporal Velocity-Informatics (TVI) Variables for Accelerated Characterization of Intracranial Aneurysms’ Rupture Status

Murayama Y, Takao H, Ishibashi T, Saguchi T, Ebara M, Yuki I, Arakawa H, Irie K, Urashima M, Molyneux AJ. Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study. Stroke. 2016;47(2):365–71.

Article  PubMed  Google Scholar 

Investigators UJ. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366(26):2474–82.

Article  Google Scholar 

Ahn J-M, Oh J-S, Yoon S-M, Shim J-H, Oh H-J, Bae H-G. Procedure-related complications during endovascular treatment of intracranial saccular aneurysms. J Cerebrovasc Endovasc Neurosurg. 2017;19(3):162–70.

Article  PubMed  PubMed Central  Google Scholar 

Chalouhi N, Zanaty M, Whiting A, Yang S, Tjoumakaris S, Hasan D, Starke RM, Hann S, Hammer C, Kung D, et al. Safety and efficacy of the pipeline embolization device in 100 small intracranial aneurysms. J Neurosurg. 2015;122(6):1498–502.

Article  PubMed  Google Scholar 

Molyneux AJ, Birks J, Clarke A, Sneade M, Kerr RS. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the uk cohort of the international subarachnoid aneurysm trial (isat). Lancet. 2015;385(9969):691–7.

Article  PubMed  PubMed Central  Google Scholar 

Kotowski M, Naggara O, Darsaut TE, Nolet S, Gevry G, Kouznetsov E, Raymond J. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of the literature from 1990 to 2011. J Neurol Neurosurg Psychiatry. 2013;84(1):42–8.

Article  PubMed  Google Scholar 

Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

Article  PubMed  Google Scholar 

Sunderland K, Jiang J, Zhao F. Disturbed flow’s impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: a pathological and methodological review. J Cell Physiol. 2022;237(1):278–300.

Article  CAS  PubMed  Google Scholar 

Balaguru UM, Sundaresan L, Manivannan J, Majunathan R, Mani K, Swaminathan A, Venkatesan S, Kasiviswanathan D, Chatterjee S. Disturbed flow mediated modulation of shear forces on endothelial plane: a proposed model for studying endothelium around atherosclerotic plaques. Sci Rep. 2016;6(1):27304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jou L-D, Quick CM, Young WL, Lawton MT, Higashida R, Martin A, Saloner D. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. Am J Neuroradiol. 2003;24(9):1804–10.

PubMed  PubMed Central  Google Scholar 

Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol. 2003;24(4):559–66.

PubMed  PubMed Central  Google Scholar 

Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42(1):144–52.

Article  PubMed  Google Scholar 

Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M, Hamzei-Sichani F, Kallmes D, Putman C, Jimenez C, Cebral JR. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochir. 2018;160:1643–52.

Article  PubMed  Google Scholar 

Kim HC, Rhim JK, Ahn JH, Park JJ, Moon JU, Hong EP, Kim MR, Kim SG, Lee SH, Jeong JH, et al. Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J Clin Med. 2019;8(5):683.

Article  PubMed  PubMed Central  Google Scholar 

Tanioka S, Ishida F, Yamamoto A, Shimizu S, Sakaida H, Toyoda M, Kashiwagi N, Suzuki H. Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiol Artif Intell. 2020;2(1):190077.

Article  Google Scholar 

Jiang J, Rezaeitaleshmahalleh M, Lyu Z, Mu N, Ahmed A, Md C, Gemmete J, Pandey A. Augmenting prediction of intracranial aneurysms’ risk status using velocity-informatics: initial experience. J Cardiovasc Transl Res. 2023;1–13.

Sunderland K, Wang M, Pandey A, Gemmete J, Huang Q, Goudge A, Jiang J. Quantitative analysis of flow vortices: differentiation of unruptured and ruptured medium-sized middle cerebral artery aneurysms. Acta Neurochir. 2021;163:2339–49.

Article  CAS  PubMed  Google Scholar 

Jiang J, Rezaeitaleshmahalleh M, Tang J, Gemmette J, Pandey A. Improving rupture status prediction for intracranial aneurysms using wall shear stress informatics. Acta Neurochir. 2025;15. https://doi.org/10.1007/s00701-024-06404-4.

Rezaeitaleshmahalleh M, Lyu Z, Mu N, Nainamalai V, Tang J, Gemmete J, Pandey A, Jiang J. Improving prediction of intracranial aneurysm rupture status using temporal velocity-informatics. Ann Biomed Eng. 2025;1–18.

Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Med Image Anal. 2023;84:102697. https://doi.org/10.1016/j.media.2022.102697.

Article  PubMed  Google Scholar 

Mu N, Lyu Z, Zhang X, McBane R, Pandey AS, Jiang J. Exploring a frequency-domain attention-guided cascade u-net: towards spatially tunable segmentation of vasculature. Comput Biol Med. 2023;167:107648. https://doi.org/10.1016/j.compbiomed.2023.107648.

Article  PubMed  PubMed Central  Google Scholar 

Obiols-Sales O, Vishnu A, Malaya N, Chandramowliswharan A. Cfdnet: A deep learning-based accelerator for fluid simulations. In: Proceedings of the 34th ACM International Conference on Supercomputing. ICS ’20. Association for Computing Machinery, New York, NY, USA. 2020. https://doi.org/10.1145/3392717.3392772.

Moser P, Fenz W, Thumfart S, Ganitzer I, Giretzlehner M. Modeling of 3d blood flows with physics-informed neural networks: comparison of network architectures. Fluids. 2023;8(2). https://doi.org/10.3390/fluids8020046.

Castro M, Putman C, Cebral J. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. Am J Neuroradiol. 2006;27(10):2061–8.

CAS  PubMed  PubMed Central  Google Scholar 

Rezaeitaleshmahalleh M, Lyu Z, Mu N, Zhang X, Rasmussen TE, McBane RD, Jiang J. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Sci Rep. 2023;13(1):13832.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang J, Johnson K, Valen-Sendstad K, Mardal K-A, Wieben O, Strother C. Flow characteristics in a canine aneurysm model: A comparison of 4d accelerated phase-contrast mr measurements and computational fluid dynamics simulations. Med Phys. 2011;38(11):6300–12. https://doi.org/10.1118/1.3652917. https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.3652917.

Jiang J, Strother C, Johnson K, Baker S, Consigny D, Wieben O, Zagzebski J. Comparison of blood velocity measurements between ultrasound doppler and accelerated phase-contrast mr angiography in small arteries with disturbed flow. Phys Med Biol. 2011;56(6):1755. https://doi.org/10.1088/0031-9155/56/6/015.

Article  PubMed  PubMed Central  Google Scholar 

Jain K, Jiang J, Strother C, Mardal K-A. Transitional hemodynamics in intracranial aneurysms — comparative velocity investigations with high resolution lattice boltzmann simulations, normal resolution ansys simulations, and mr imaging. Med Phys. 2016;43(11):6186–98. https://doi.org/10.1118/1.4964793. https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1118/1.4964793.

Rezaeitaleshmahalleh M, Lyu Z, Mu N, Jiang J. Using convolutional neural network-based segementation for imaging-based computational fluid dynamics simulations of brain aneurysms: Intitial experience in automated model creation. J Mech Med Biol. 2023;23(4):2340055. https://doi.org/10.1142/s0219519423400559.

Article  PubMed  PubMed Central  Google Scholar 

Lyu Z, King K, Rezaeitaleshmahalleh M, Pienta D, Mu N, Zhao C, Zhou W, Jiang J. Deep-learning-based image segmentation for image-based computational hemodynamic analysis of abdominal aortic aneurysms: a comparison study. Biomed Phys Eng Express. 2023;9(6):067001. https://doi.org/10.1088/2057-1976/acf3ed.

Article  Google Scholar 

Sunderland K, Jiang J. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery. Med Eng Phys. 2019;74:129–36.

Article  CAS  PubMed  Google Scholar 

Ashgriz N. An introduction to computational fluid dynamics. McGraw-Hill Education, 2002. Chap. 24. https://www.accessengineeringlibrary.com/content/book/9780071363723/chapter/chapter24. Accessed 12 Dec 2023.

Gwilliam MN, Hoggard N, Capener D, Singh P, Marzo A, Verma PK, Wilkinson ID. Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J Cereb Blood Flow Metab. 2009;29(12):1975–82.

Article  PubMed  Google Scholar 

Jiang J, Strother CM. Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with patient-specific computational fluid dynamics (cfd) simulations. IEEE Trans Med Imaging. 2012;32(2):153–64.

Article  PubMed  Google Scholar 

Leopardi P. A partition of the unit sphere into regions of equal area and small diameter. Electron Trans Numer Anal. 2006;25(12):309–27.

Google Scholar 

Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):104–7.

Article  Google Scholar 

Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.

Article  Google Scholar 

Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process. 1975;4(2):172–9.

Comments (0)

No login
gif