Diammonium Glycyrrhizinate Alleviated Myocardial Fibrosis Induced by Isoprenaline Via Modulation of STAT/Smad3 Pathway

Lopez B, Ravassa S, Moreno MU, Jose GS, Beaumont J, Gonzalez A, Diez J. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021;18:479–98. https://doi.org/10.1038/s41569-020-00504-1.

Article  PubMed  Google Scholar 

Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10194430

Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82:63–78. https://doi.org/10.1146/annurev-physiol-021119-034527.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Lopez de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev. 2021;173:504–19. https://doi.org/10.1016/j.addr.2021.03.021

Zhang Y, Elsik M, Edgley AJ, Cox AJ, Kompa AR, Wang B, Tan CY, Khong FL, Stapleton DI, Zammit S, Williams SJ, Gilbert RE, Krum H, Kelly DJ. A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int J Cardiol. 2013;168:1174–85. https://doi.org/10.1016/j.ijcard.2012.11.067.

Article  PubMed  Google Scholar 

Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-beta/Smad signaling pathway. Front Pharmacol. 2023;14:1092148. https://doi.org/10.3389/fphar.2023.1092148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao J, Sanchez JI, Saldarriaga OA, Solis LM, Tweardy DJ, Maru DM, Stevenson HL, Beretta L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep. 2023;5:100628. https://doi.org/10.1016/j.jhepr.2022.100628.

Article  PubMed  Google Scholar 

Xu S, Mao Y, Wu J, Feng J, Li J, Wu L, Yu Q, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Wang F, Dai W, Fan X, Guo C. TGF-beta/Smad and JAK/STAT pathways are involved in the anti-fibrotic effects of propylene glycol alginate sodium sulphate on hepatic fibrosis. J Cell Mol Med. 2020;24:5224–37. https://doi.org/10.1111/jcmm.15175.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Hou H, Wang X, Dai X, Zhang W, Tang Q, Dong Y, Yan C, Wang B, Li Z, Cao H. Diammonium glycyrrhizinate ameliorates obesity through modulation of gut microbiota-conjugated BAs-FXR signaling. Front Pharmacol. 2021;12:796590. https://doi.org/10.3389/fphar.2021.796590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo J, Meng T, Wang Y, Tang W. A review of the antiviral activities of glycyrrhizic acid, glycyrrhetinic acid and glycyrrhetinic acid monoglucuronide. Pharmaceuticals (Basel). 2023;16. https://doi.org/10.3390/ph16050641

Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira M. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32:2323–39. https://doi.org/10.1002/ptr.6178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu S, Yu J, Sun F, Zhang X, Sheng W, Liu K, Li X, Li W. Diammonium glycyrrhizinate injection promotes zebrafish angiogenesis through the mTOR/HIF-1 signaling pathway. BioRxiv. 2025;2025.02.19.639026. https://doi.org/10.1101/2025.02.19.639026

Zhao H, Wang SL, Qian L, Jin JL, Li H, Xu Y, Zhu XL. Diammonium glycyrrhizinate attenuates Abeta(1–42) -induced neuroinflammation and regulates MAPK and NF-kappaB pathways in vitro and in vivo. CNS Neurosci Ther. 2013;19:117–24. https://doi.org/10.1111/cns.12043.

Article  CAS  PubMed  Google Scholar 

Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention. Phytother Res. 2018;32:1908–32. https://doi.org/10.1002/ptr.6152.

Article  PubMed  Google Scholar 

Sun Y, Zhang Y, Chi P. Pirfenidone suppresses TGF-beta1-induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol Med Rep. 2018;18:3907–13. https://doi.org/10.3892/mmr.2018.9423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vu TN, Chen X, Foda HD, Smaldone GC, Hasaneen NA. Interferon-gamma enhances the antifibrotic effects of pirfenidone by attenuating IPF lung fibroblast activation and differentiation. Respir Res. 2019;20:206. https://doi.org/10.1186/s12931-019-1171-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao Y, Chen Q, Zhao C, Yang X, Cun Q, Yang W, Zhang Y, Zhu Y, Zhong H. The in vitro anti-fibrotic effect of Pirfenidone on human pterygium fibroblasts is associated with down-regulation of autocrine TGF-beta and MMP-1. Int J Med Sci. 2020;17:734–44. https://doi.org/10.7150/ijms.43238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aimo A, Cerbai E, Bartolucci G, Adamo L, Barison A, Lo Surdo G, Biagini S, Passino C, Emdin M. Pirfenidone is a cardioprotective drug: Mechanisms of action and preclinical evidence. Pharmacol Res. 2020;155:104694. https://doi.org/10.1016/j.phrs.2020.104694.

Article  CAS  PubMed  Google Scholar 

Heo JY, Do JY, Lho Y, Kim AY, Kim SW, Kang SH. TGF-beta1 receptor inhibitor SB525334 attenuates the epithelial to mesenchymal transition of peritoneal mesothelial cells via the TGF-beta1 signaling pathway. Biomedicines. 2021; 9. https://doi.org/10.3390/biomedicines9070839

Braga CL, Felix NS, Teixeira DE, Vieira JB, Silva-Aguiar RP, Bose RM, Antunes MA, Rocha NDN, Caruso-Neves C, Cruz FF, Rocco PRM, Silva PL. Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension. Eur J Pharmacol. 2020;887:173438. https://doi.org/10.1016/j.ejphar.2020.173438.

Article  CAS  PubMed  Google Scholar 

Huo YB, Gao X, Peng Q, Nie Q, Bi W. Dihydroartemisinin alleviates AngII-induced vascular smooth muscle cell proliferation and inflammatory response by blocking the FTO/NR4A3 axis. Inflamm Res. 2022;71:243–53. https://doi.org/10.1007/s00011-021-01533-3.

Article  CAS  PubMed  Google Scholar 

Yanan S, Bohan L, Shuaifeng S, Wendan T, Ma Z, Wei L. Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway. Iran J Basic Med Sci. 2023;26:114–20. https://doi.org/10.22038/ijbms.2022.67908.14848.

Article  PubMed  PubMed Central  Google Scholar 

Jin J, Xiong T, Hou X, Sun X, Liao J, Huang Z, Huang M, Zhao Z. Role of Nrf2 activation and NF-κB inhibition in valproic acid induced hepatotoxicity and in diammonium glycyrrhizinate induced protection in mice. Food Chem Toxicol. 2014;73:95–104. https://doi.org/10.1016/j.fct.2014.08.009.

Article  CAS  PubMed  Google Scholar 

Wang K, Li Z, Sun Y, Liu X, Ma W, Ding Y, Hong J, Qian L, Xu D. Dapagliflozin improves cardiac function, remodeling, myocardial apoptosis, and inflammatory cytokines in mice with myocardial infarction. J Cardiovasc Transl Res. 2022;15:786–96. https://doi.org/10.1007/s12265-021-10192-y.

Article  PubMed  Google Scholar 

Mi S, Huang F, Jiao M, Qian Z, Han M, Miao Z, Zhan H. Inhibition of MEG3 ameliorates cardiomyocyte apoptosis and autophagy by regulating the expression of miRNA-129–5p in a mouse model of heart failure. Redox Rep. 2023;28:2224607. https://doi.org/10.1080/13510002.2023.2224607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Wang Z, Xia H, Yu L, Hu Z. Vildagliptin and G-CSF improved angiogenesis and survival after acute myocardial infarction. Arch Med Res. 2019;50:133–41. https://doi.org/10.1016/j.arcmed.2019.07.004.

Article  CAS  PubMed  Google Scholar 

Juengsomjit R, Meesakul O, Arayapisit T, Larbcharoensub N, Janebodin K. Polarized microscopic analysis of picrosirius red stained salivary gland pathologies: an observational study. Eur J Dent. 2022;16:930–7. https://doi.org/10.1055/s-0042-1743145.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Li S, Yu L, Wu J, She T, Gan Y, Hu Z, Liao W, Xia H. Bone mesenchymal stem cells contributed to the neointimal formation after arterial injury. PLoS One. 2013;8:e82743. https://doi.org/10.1371/journal.pone.0082743.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higuchi Y, Ogata T, Nakanishi N, Nishi M, Tsuji Y, Tomita S, Conway SJ, Matoba S. Cavin-2 promotes fibroblast-to-myofibroblast trans-differentiation and aggravates cardiac fibrosis. ESC Heart Fail. 2024;11:167–78. https://doi.org/10.1002/ehf2.14571.

Article  PubMed  Google Scholar 

Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci. 2023;80:50. https://doi.org/10.1007/s00018-023-04699-7.

Comments (0)

No login
gif