World Health Organization. Cardiovascular diseases (CVDs). 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds%29?utm_source
Dattani S, Roser M. What are the different types of cardiovascular diseases, and how many deaths do they cause? 2023. Available at: https://ourworldindata.org/cardiovascular-diseases-types-and-death-tolls.
American Heart Association. Silent Ischemia and Ischemic Heart Disease. 2022. Available at: https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks/silent-ischemia-and-ischemic-heart-disease.
Ndrepepa G. Atherosclerosis & ischaemic heart disease: Here to stay or gone tomorrow. Indian J Med Res, 2017;146(3), pp.293–297. https://doi.org/10.4103/ijmr.IJMR_1668_17. Accessed 23 Mar 2025.
Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. StatPearls. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK554410/
Mechanic OJ, Gavin M, Grossman SA. Acute myocardial infarction. StatPearls. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459269/. Accessed: 23 March 2025.
Adnan G, Singh DP, Mahajan K. Coronary artery thrombus. StatPearls. 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK534808/. Accessed: 23 March 2025.
Ojha N, Dhamoon AS. Myocardial infarction. StatPearls. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537076/. Accessed: 23 March 2025.
Kashou AH, Basit H, Malik A. ST segment. StatPearls. 2019. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459364/
Młynarska E, Czarnik W, Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Rysz J, Franczyk B. From atherosclerotic plaque to myocardial infarction—the leading cause of coronary artery occlusion. Int J Mol Sci 2024;25(13):7295. https://doi.org/10.3390/ijms25137295. Accessed: 23 March 2025.
Manari A, Albiero R, De Servi S. High-risk non-ST-segment elevation myocardial infarction versus ST-segment elevation myocardial infarction: same behaviour and outcome? J Cardiovasc Med. 2009;10(Suppl 1):S13–6. https://doi.org/10.2459/01.JCM.0000362039.48638.92.
Akbar H, Foth C, Kahloon RA, Mountfort S. Acute ST-segment elevation myocardial infarction (STEMI). StatPearls. 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK532281/. Accessed 23 March 2025.
Basit H, Malik A, Huecker MR. Non–ST-Segment Elevation Myocardial Infarction. StatPearls. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK513228/. Accessed: 23 March 2025.
Forgos RN. Non-ST-segment elevation myocardial infarction (NSTEMI). 2024. Available at: https://www.verywellhealth.com/non-st-segment-elevation-myocardial-infarction-nstemi-1746017. Accessed 23 March 2025.
Rodríguez-Padial L, Fernández-Pérez C, Bernal JL, Anguita M, Sambola A, Fernández-Ortiz A, Elola FJ (2020) Differences in in-hospital mortality after STEMI versus NSTEMI by sex. Eleven-year trend in the Spanish National Health Service. Rev Esp Cardiol (English Edition), 2020;74(6):510–517. https://doi.org/10.1016/j.rec.2020.04.017
Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: Current perspectives. Vascular Health Risk Manage 2019;15:1–10. https://doi.org/10.2147/VHRM.S166157 (Accessed: 23 March 2025).
Assi TB, Baz E. Current applications of therapeutic phlebotomy. Blood Transfus. 2014;12(Suppl 1):s75–83. 10.2450/2013.0299-12.
Alaour B, Liew F, Kaier TE. Cardiac troponin—diagnostic problems and impact on cardiovascular disease. Annals Med 2018;50(8):655–665. https://doi.org/10.1080/07853890.2018.1530450. Accessed 23 March 2025
Tilea I, Varga A, Serban RC (2021) Past, present, and future of blood biomarkers for the diagnosis of acute myocardial infarction—promises and challenges. Diagnostics, 2021:11(5):881. https://doi.org/10.3390/diagnostics11050881. Accessed 23 March 2025.
Ghimire A, Giri S, Khanal N, Rayamajhi S, Thapa A, Bist A, Devkota S. Diagnostic accuracy of glycogen phosphorylase BB for myocardial infarction: A systematic review and meta‐analysis. Journal of Clinical Laboratory Analysis, 2022:36(5). https://doi.org/10.1002/jcla.24368. Accessed 23 March 2025
Tan E, Liu D, Perry L, Zhu J, Cid-Serra X, Deane A, Yeo C, Ajani A. Cell-free DNA as a potential biomarker for acute myocardial infarction: A systematic review and meta-analysis. IJC Heart Vasculature 2023;47:101246. https://doi.org/10.1016/j.ijcha.2023.101246. Accessed: 23 March 2025.
Moreira-Costa L, Barros AS, Lourenço AP, Leite-Moreira A, Nogueira-Ferreira R, Thongboonkerd V, Vitorino R. Exosome-derived mediators as potential biomarkers for cardiovascular diseases: A network approach. Proteomes, 2021;9(1):8–8. https://doi.org/10.3390/proteomes9010008. Accessed 23 March 2025.
Klinkenberg LJJ (2016) High-sensitivity cardiac troponins in health and disease. Nederlands Tijdschrift voor Klinische Chemie en Laboratoriumgeneeskunde, 2016;41(3). Available at: https://www.nvkc.nl/files/ntkc/Klinkenberg.pdf. Accessed 23 March 2025.
Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, Plein S, Mueller C, Haaf P. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Internal Emergency Med, 2017;12(2):147–155. https://doi.org/10.1007/s11739-017-1612-1. Accessed 23 March 2025
Sekhon N, Peacock WF. Biomarkers to assist in the evaluation of chest pain. Biomarkers Cardiovasc Dis, 2019;115–128. https://doi.org/10.1016/b978-0-323-54835-9.00011-9. Accessed 23 March 2025.
Katrukha IA, Katrukha AG. Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem, 2020;67(1):124–130. https://doi.org/10.1093/clinchem/hvaa281. Accessed 23 March 2025.
Chaulin A. Cardiac troponins: contemporary biological data and new methods of determination. Vasc Health Risk Manage, 2021;17:299–316. https://doi.org/10.2147/vhrm.s300002. Accessed 23 March 2025.
Freund Y, Chenevier-Gobeaux C, Bonnet P, Claessens Y-E, Allo J-C, Doumenc B, Leumani F, Cosson C, Riou B, Ray P. High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Critical Care, 2011;15(3):R147. https://doi.org/10.1186/cc10270. Accessed 23 March 2025.
Mahajan VS, Jarolim P. How to interpret elevated cardiac troponin levels. Circulation, 2011;124(21):2350–2354. https://doi.org/10.1161/circulationaha.111.023697. Accessed 23 March 2025.
Apple FS, Collinson PO. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem, 2011;58(1):54–61. https://doi.org/10.1373/clinchem.2011.165795. Accessed 23 March 2025.
Ammirati E, Dobrev D. Conventional Troponin-I versus high-sensitivity troponin-T: Performance and incremental prognostic value in non-ST-elevation acute myocardial infarction patients with negative CK-MB based on a real-world multicenter cohort. IJC Heart Vasculature, 2018;20:38–39. https://doi.org/10.1016/j.ijcha.2018.07.002. Accessed 23 March 2025.
Guimarães-Ferreira L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (São Paulo), [online]. 2014;12(1):126–31. https://doi.org/10.1590/s1679-45082014rb2741.
Aujla RS, Patel R. Creatine Phosphokinase. [online] PubMed. 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK546624
Li Y, Chen Y, Shao B, Liu J, Hu R, Zhao F, Cui X, Zhao X, Wang Y. Evaluation of creatine kinase (CK)-MB to total CK ratio as a diagnostic biomarker for primary tumors and metastasis screening. Pract Lab Med, 2023;37:e00336–e00336. https://doi.org/10.1016/j.plabm.2023.e00336. Accessed 23 March 2025.
Loughrey CM, Young IS. Clinical biochemistry of the cardiovascular system. Clin Biochem: Metabolic Clin Aspects, 2014; 737–766. https://doi.org/10.1016/b978-0-7020-5140-1.00038-9. Accessed 23 March 2025.
Roberts R, Sobel BE, Parker CW. Radioimmunoassay for Creatine Kinase Isoenzymes. Science, 1976:194(4267):855–857. https://doi.org/10.1126/science.982049. Accessed 23 March 2025.
Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Annals Transl Med 2016;4(10): 194–194. https://doi.org/10.21037/atm.2016.05.19. Accessed 23 March 2025.
Nakamura Y, Ito K, Takemura N, Inagaki F, Mihara F, Kokudo N. Elevation in creatine kinase isoenzyme-MM associated with hepatocellular carcinoma: a case report and review of literature. Clin J Gastroenterol, 12022;5(2):460–466. https://doi.org/10.1007/s12328-022-01612-w. Accessed 23 March 2025.
Al-Hadi HA, Fox KA. Cardiac Markers in the early diagnosis and management of patients with acute coronary syndrome. Sultan Qaboos Univ Med J, [online] 2009;9(3):231. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC3074795/. Accessed 23 March 2025
Puleo PR, Meyer D, Wathen C, Tawa CB, Wheeler S, Hamburg RJ, Ali N, Obermueller SD, Triana FJ, Zimmerman JL, Perryman MB, Roberts R. Use of a rapid assay of subforms of creatine kinase mb to diagnose or rule out acute myocardial infarction. New England J Med, 1994;331(9):561–566. https://doi.org/10.1056/nejm199409013310901. Accessed 1 April 2025
Hawkins RC, Tan HL. Comparison of the diagnostic utility of CK, CK-MB (activity and mass), troponin T and troponin I in patients with suspected acute myocardial infarction. Singapore Med J, 1999;40(11):680–684. Available at: https://pubmed.ncbi.nlm.nih.gov/10709404/. Accessed 23 March 2025.
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci, [online] 2018;63(1):68–78. https://doi.org/10.1016/j.advms.2017.05.005. Accessed 23 March 2025.
Eslami-Farsani R, Farhadian S, Shareghi B, Asgharzadeh S. Structural change of myoglobin structure after binding with spermidine. J Mol Liquids, 2022;352:118691. https://doi.org/10.1016/j.molliq.2022.118691. Accessed 23 March 2025.
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev. 2017;122:84–104. https://doi.org/10.1016/j.addr.2017.02.001.
Article PubMed CAS Google Scholar
Vanek T, Kohli A. Biochemistry, Myoglobin. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544256/.
Zhu Z, Wang Y, Kang Y, Zhang H, Zhang Z, Fei Z, Cao J. Graphene oxide destabilizes myoglobin and alters its conformation. Carbon, 2016;114:449–456. https://doi.org/10.1016/j.carbon.2016.12.053. Accessed 23 March 2025.
Chan CP, Rainer TH. Pathophysiological roles and clinical importance of biomarkers in acute coronary syndrome. Adv Clin Chem, 2013;23–63. https://doi.org/10.1016/b978-0-12-405211-6.00002-4. Accessed 23 March 2025.
Nieuwenhoven V, Kleine AH, Wodzig WH, Hermens WT, Kragten HA, Maessen JG, Punt CD, Dieijen V, Der V, Jan FC, Glatz. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid–binding protein. Circulation, 1995;92(10):2848–2854. https://doi.org/10.1161/01.cir.92.10.2848. Accessed 23 March 2025.
Kehl DW, Iqbal N, Fard A, Kipper BA, De La Parra Landa A, Maisel AS. Biomarkers in acute myocardial injury. Transl Res, 2012;159(4): 252–264. https://doi.org/10.1016/j.trsl.2011.11.002. (Accessed 23 March 2025).
Talley JT, Mohiuddin SS. Biochemstry, Fatty Acid Oxidation. [online] PubMed. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK556002/.
Chmurzyńska A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genetics, 2006;47(1):39–48. https://doi.org/10.1007/bf03194597. Accessed 23 March 2025.
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Veterinar Sci. 2023 May 1;158:185-95. https://doi.org/10.1016/j.rvsc.2023.03.011. (Accessed 23 March 2025).
Strauss V, Wöhrmann T, Frank I, Hübel U, Luft J, Bode G, Germann PG. Short-term increase of serum troponin I and serum heart-type fatty acid-binding protein (H-FABP) in dogs following administration of formoterol. Exp Toxicol Pathol. 2010 Jul 1;62(4):343-52. https://doi.org/10.1016/j.etp.2009.05.006. Accessed 23 March 2025.
Iida M, Yamazaki M, Honjo H, Kodama I. Predictive value of heart-type fatty acid-binding protein for left ventricular remodelling and clinical outcome of hypertensive patients with mild-to-moderate aortic valve diseases. J Human Hyperten. 2007;21(7):551-7. https://doi.org/10.1038/sj.jhh.1002195. Accessed 23 March 2025.
Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. Novel biomarkers of heart failure. Adv Clin Chem. 2017;79:93-152. https://doi.org/10.1016/bs.acc.2016.09.002. Accessed 23 March 2025.
Kleine AH, Glatz JF, Van Nieuwenhoven FA, Van der Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cellular Biochem. 1992;116(1):155-62. https://doi.org/10.1007/BF01270583. Accessed 23 March 2025.
Glatz JF, Renneberg R. Added value of H-FABP as a plasma biomarker for the early evaluation of suspected acute coronary syndrome. Clin Lipidology. 2014;9(2):205-20.. https://doi.org/10.2217/clp.13.87. Accessed 23 March 2025.
Han X, Zhang S, Chen Z, Adhikari BK, Zhang Y, Zhang J, Sun J, Wang Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clinica Chimica Acta. 2020;510:298-310.. https://doi.org/10.1016/j.cca.2020.07.040. Accessed 28 March 2025.
Paredes-Flores MA, Rahimi N, Mohiuddin SS. Biochemistry, Glycogenolysis. NIH.gov. 2024. Available at: https://www.ncbi.nlm.nih.gov/books/NBK554417/
Dobrić M, Ostojić M, Giga V, Djordjevic-Dikic A, Stepanović J, Radovanović N, Beleslin B. Glycogen phosphorylase BB in myocardial infarction. Clin Chim Acta. 2015;438:107–11. https://doi.org/10.1016/j.cca.2014.08.011.
Article PubMed CAS Google Scholar
Newgard CB, Hwang PK, Fletterick RJ. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. https://doi.org/10.3109/10409238909082552.
Article PubMed CAS Google Scholar
Singh N, Rathore V, Mahat RK, Rastogi P. Glycogen phosphorylase BB: a more sensitive and specific marker than other cardiac markers for early diagnosis of acute myocardial infarction. Indian J Clin Biochem. 2018;33(3):356-60.https://doi.org/10.1007/s12291-017-0685-y. Accessed: 19 March 2025.
Krause E-G, Rabitzsch G, Noll F, Mair J, Puschendorf B. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Biochem Mechanisms Heart Function. 1996; 289–295. https://doi.org/10.1007/978-1-4613-1279-6_37. Accessed 25 March 2025.
Mair J. Glycogen phosphorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clinica Chimica Acta, 1998;272(1):79–86. https://doi.org/10.1016/s0009-8981(97)00254-4. Accessed 26 March 2025.
Novack ML, Zevitz ME. Natriuretic peptide B type test. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK556136/. Accessed: 19 March 2025.
Volpe M, Rubattu S, Burnett J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. European Heart J. 2014;35(7):419-25. https://doi.org/10.1093/eurheartj/eht466. Accessed 26 March 2025.
Okamoto R, Ali Y, Hashizume R, Suzuki N, Ito M. BNP as a Major Player in the Heart-Kidney Connection. Int J Mol Sci. 2019;20(14):3581. https://doi.org/10.3390/ijms20143581. Accessed 26 March 2025.
Savoia C, Schiffrin EL. Significance of recently identified peptides in hypertension: endothelin, natriuretic peptides, adrenomedullin, leptin. Med Clin. 2004;88(1):39-62.https://doi.org/10.1016/s0025-7125(03)00122-6. Accessed 26 March 2025.
Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. cGMP: Generators Effectors Ther Implications. 2009:341-66.https://doi.org/10.1007/978-3-540-68964-5_15. (Accessed 26 March 2025).
Gong Z, Xing D, Wu R, Zhang S, Ye C, Chen Y, Liu X, Chen L, Wang T. Prognostic value of N-terminal pro-form B-type natriuretic peptide (NT-proBNP) in patients with congenital heart disease undergoing cardiac surgery: a systematic review and meta-analysis of cohort studies. Cardiovasc Diagnosis Ther. 2022;12(6):853. https://doi.org/10.21037/cdt-22-155. Accessed 26 March 2025.
Suzuki S, Yoshimura M, Nakayama M, Mizuno Y, Harada E, Ito T, Nakamura S, Abe K, Yamamuro M, Sakamoto T, Saito Y. Plasma level of B-type natriuretic peptide as a prognostic marker after acute myocardial infarction: a long-term follow-up analysis. Circulation. 2004;110(11):1387-91..https://doi.org/10.1161/01.cir.0000141295.60857.30. Accessed 26 March 2025.
Al-saeed H, Al-Mudhaffer M, Al-Saedy A. Early diagnosis of brain natriuretic peptide (Pro-BNP) and ischemia modified albumin (IMA) levels in acute coronary syndrome patients with ST segment elevation myocardial infarction (STEMI) and non-ST segment elevation myocardial infarction (NSTEMI). J Cardiovasc Dis Res. 2020;11(4):123–130. https://doi.org/10.31838/srp.2020.4.73.
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther. 2021;227:107863. https://doi.org/10.1016/j.pharmthera.2021.107863. Accessed 21 March 2025.
Durak-Nalbantić A, Džubur A, Dilić M, Pozderac Ž, Mujanović-Narančić A, Kulić M, Hodžić E, Resić N, Brdjanović S, Zvizdić F. Brain natriuretic peptide release in acute myocardial infarction. Bosnian J Basic Med Sci. 2012;12(3):164.. https://doi.org/10.17305/bjbms.2012.2470. Accessed 21 March 2025.
EBI Web Team. trimethylamine N-oxide (CHEBI:15724). 2020. Available at: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15724.
Shanmugham M, Bellanger S, Leo CH. Gut-derived metabolite, trimethylamine-N-oxide (TMAO) in cardio-metabolic diseases: detection, mechanism, and potential therapeutics. Pharmaceuticals, 2023;16(4):504. [Online] https://doi.org/10.3390/ph16040504. Accessed 13 October 2024.
Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, Org E, Wu Y, Li L, Smith JD, Tang WHW. DiDonato JA, Lusis AJ, Hazen SL. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20(5):799-812. [Online] https://doi.org/10.1016/j.cmet.2014.10.006. Accessed 9 October 2024
Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J, 2021;20:301–319. [Online] https://doi.org/10.17179/excli2020-3239. Accessed 3 October 2024
Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins, 2016;8(11). [Online] https://doi.org/10.3390/toxins8110326. Accessed 12 October 2024
Zeisel SH, Warrier M. TrimethylamineN-oxide, the microbiome, and heart and kidney disease. Annual Rev Nutrition, 2017;37(1):157–181. [Online] https://doi.org/10.1146/annurev-nutr-071816-064732. Accessed 12 October 2024
Yin J, Liao S, He Y, Wang S, Xia G, Liu F, Zhu J, You C, Chen Q, Zhou L, Pan S, Zhou H. Dysbiosis of gut microbiota with reduced trimethylamine‐N‐Oxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc, 2015;4(11). [Online] https://doi.org/10.1161/jaha.115.002699. Accessed 2 October 2024
Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta‐analysis of prospective studies. J Am Heart Assoc, 2017;6(7). [Online] https://doi.org/10.1161/jaha.116.004947. Accessed 3 October 2024
Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV.. How do macrophages sense modified low-density lipoproteins? Int J Cardiol, [online] 2017;230:232–240. https://doi.org/10.1016/j.ijcard.2016.12.164. Accessed 26 March 2025.
Canyelles M, Borràs C, Rotllan N, Tondo M, Escolà-Gil JC, Blanco-Vaca F. Gut microbiota-derived TMAO: A causal factor promoting atherosclerotic cardiovascular disease? Int J Mol Sci, 2023;24(3):1940. [Online] https://doi.org/10.3390/ijms24031940. Accessed 2 March 2025
Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Critical Care, 2019;23(1):44. https://doi.org/10.1186/s13054-019-2339-3. Accessed 26 March 2025.
Malaguarnera M. Biomarkers of statin-induced musculoskeletal pain: Vitamin D and beyond. Elsevier eBooks, 2022; 539–549. https://doi.org/10.1016/b978-0-12-818988-7.00015-7. Accessed 26 March 2025.
Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the skeletal muscle. Cells, [online] 2024;13(14):1177. https://doi.org/10.3390/cells13141177.
Dettbarn W-D, Milatovic D, Gupta RC. Oxidative stress in anticholinesterase-induced excitotoxicity. ScienceDirect, 2006;567–580. https://doi.org/10.1016/B978-012088523-7/50037-5. Accessed 26 March 2025.
Foucher CD, Tubben RE. Lactic acidosis. National Library of Medicine. 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK470202/.
Lazzeri C, Valente S, Chiostri M, Gensini GF. Clinical significance of lactate in acute cardiac patients. World J Cardiol, 2015;7(8):483–489. https://doi.org/10.4330/wjc.v7.i8.483. Accessed 26 March 2025.
Vermeulen RP, Hoekstra M, Nijsten MW, van der Horst IC, van Pelt LJ, Jessurun GA, Jaarsma T, Zijlstra F, van den Heuvel AF. Clinical correlates of arterial lactate levels in patients with ST-segment elevation myocardial infarction at admission: a descriptive study. Critical Care, 2010;14(5):R164.
Comments (0)