Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O’Donnell MJ et al (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13:429–438
Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370:2478–2486
Ihara K, Sasano T (2022) Role of inflammation in the pathogenesis of atrial fibrillation. Front Physiol 13:862164
Article PubMed PubMed Central Google Scholar
Aliena-Valero A, Baixauli-Martín J, Torregrosa G, Tembl JI, Salom JB (2021) Clot composition analysis as a diagnostic tool to gain insight into ischemic stroke etiology: a systematic review. J Stroke 23(3):327–342
Article PubMed PubMed Central Google Scholar
Staessens S, François O, Brinjikji W, Doyle KM, Vanacker P, Andersson T et al (2021) Studying stroke thrombus composition after thrombectomy: what can we learn? Stroke 52:3718–3727
Article PubMed PubMed Central Google Scholar
Hulsmans M, Schloss MJ, Lee IH, Bapat A, Iwamoto Y, Vinegoni C et al (2023) Recruited macrophages elicit atrial fibrillation. Science 381:231–239
Article PubMed PubMed Central Google Scholar
Liu Y, Shi Q, Ma Y, Liu Q (2018) The role of immune cells in atrial fibrillation. J Mol Cell Cardiol 123:198–208
Yamashita T, Sekiguchi A, Iwasaki Y-k, Date T, Sagara K, Tanabe H et al (2010) Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ J 74:262–270
Pfluecke C, Berndt K, Wydra S, Tarnowski D, Barthel P, Quick S et al (2016) Atrial fibrillation is associated with high levels of monocyte-platelet-aggregates and increased CD11b expression in patients with aortic stenosis. Thromb Haemost 115:993–1000
Pfluecke C, Tarnowski D, Plichta L, Berndt K, Schumacher P, Ulbrich S et al (2016) Monocyte-platelet aggregates and CD11b expression as markers for thrombogenicity in atrial fibrillation. Clin Res Cardiol 105:314–322
Gong L, Zheng X, Zhang W, Shu Z, Wang H, Dong Q et al (2021) Cd4(+)cd25(+) regulatory t cells in intracranial thrombi are inversely correlated with hemorrhagic transformation after thrombectomy: A clinical-immunohistochemical analysis of acute ischemic stroke. Oxid Med Cell Longev 2021:3143248
Article PubMed PubMed Central Google Scholar
Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke 24:35–41
Schuhmann MK, Gunreben I, Kleinschnitz C, Kraft P (2016) Immunohistochemical analysis of cerebral thrombi retrieved by mechanical thrombectomy from patients with acute ischemic stroke. Int J Mol Sci 17:298
Article PubMed PubMed Central Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9:671–675
Article PubMed PubMed Central Google Scholar
Ruan L, Zhang L, Zhang C (2021) Thrombus. In: Gu D, Dupre ME (eds) Encyclopedia of gerontology and population aging. Springer International Publishing, Cham, pp 5148–5157
Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D et al (2006) Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 37:2086–2093
Boeckh-Behrens T, Schubert M, Forschler A, Prothmann S, Kreiser K, Zimmer C et al (2016) The impact of histological clot composition in embolic stroke. Clin Neuroradiol 26:189–197
Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718
Article PubMed PubMed Central Google Scholar
Jovin TG, Nogueira RG, Investigators D (2018) Thrombectomy 6 to 24 hours after stroke. N Engl J Med 378:1161–1162
Niesten JM, van der Schaaf IC, van Dam L, Vink A, Vos JA, Schonewille WJ et al (2014) Histopathologic composition of cerebral thrombi of acute stroke patients is correlated with stroke subtype and thrombus attenuation. PLoS ONE 9:e88882
Article PubMed PubMed Central Google Scholar
Sporns PB, Hanning U, Schwindt W, Velasco A, Minnerup J, Zoubi T et al (2017) Ischemic stroke: what does the histological composition tell us about the origin of the thrombus? Stroke 48:2206–2210
Boeckh-Behrens T, Schubert M, Förschler A, Prothmann S, Kreiser K, Zimmer C et al (2016) The impact of histological clot composition in embolic stroke. Clin Neuroradiol 26:189–197
Ahn SH, Hong R, Choo IS, Heo JH, Nam HS, Kang HG et al (2016) Histologic features of acute thrombi retrieved from stroke patients during mechanical reperfusion therapy. Int J Stroke 11:1036–1044
Boeckh-Behrens T, Kleine JF, Zimmer C, Neff F, Scheipl F, Pelisek J et al (2016) Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke 47:1864–1871
Kim SK, Yoon W, Kim TS, Kim HS, Heo TW, Park MS (2015) Histologic analysis of retrieved clots in acute ischemic stroke: correlation with stroke etiology and gradient-echo mri. AJNR Am J Neuroradiol 36:1756–1762
Article PubMed PubMed Central Google Scholar
Shin JW, Jeong HS, Kwon HJ, Song KS, Kim J (2018) High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. PLoS ONE 13:e0197492
Article PubMed PubMed Central Google Scholar
Maekawa K, Shibata M, Nakajima H, Mizutani A, Kitano Y, Seguchi M et al (2018) Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovasc Dis Extra 8:39–49
Article PubMed PubMed Central Google Scholar
Hashimoto T, Hayakawa M, Funatsu N, Yamagami H, Satow T, Takahashi JC et al (2016) Histopathologic analysis of retrieved thrombi associated with successful reperfusion after acute stroke thrombectomy. Stroke 47:3035–3037
Fitzgerald S, Dai D, Wang S, Douglas A, Kadirvel R, Layton KF et al (2019) Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. Stroke 50:1907–1910
Article PubMed PubMed Central Google Scholar
Bi R, Chen S, Chen S, Peng Q, Jin H, Hu B (2021) The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic. Cell Mol Life Sci 78:6251–6264
Article PubMed PubMed Central Google Scholar
Dargazanli C, Rigau V, Eker O, Riquelme Bareiro C, Machi P, Gascou G et al (2016) High cd3 + cells in intracranial thrombi represent a biomarker of atherothrombotic stroke. PLoS ONE 11:e0154945
Article PubMed PubMed Central Google Scholar
Jabrah D, Rossi R, Molina S, Douglas A, Pandit A, McCarthy R et al (2024) White blood cell subtypes and neutrophil extracellular traps content as biomarkers for stroke etiology in acute ischemic stroke clots retrieved by mechanical thrombectomy. Thromb Res 234:1–8
Akkipeddi SMK, Rahmani R, Schartz D, Chittaranjan S, Ellens NR, Kohli GS et al (2024) Stroke emboli from patients with atrial fibrillation enriched with neutrophil extracellular traps. Res Pract Thromb Haemost 8:102347
Article PubMed PubMed Central Google Scholar
Ally A, Campbell VC, DeLuca DA, Helms KL, Juang P, Knoll BJ, Larson D, Patel, Yannelli JR, Flaherty DK (2012) Chapter 12 - phagocytosis and intracellular killing. Immunology for pharmacy. Mosby, Saint Louis, pp 97–101
Lin QY, Bai J, Zhang YL, Li HH (2023) Integrin CD11b contributes to hypertension and vascular dysfunction through mediating macrophage adhesion and migration. Hypertension 80:57–69
ElAli A, Jean LeBlanc N (2016) The role of monocytes in ischemic stroke pathobiology: new avenues to explore. Front Aging Neurosci 8:29
Comments (0)