Optimizing hemorrhage management in trauma: integrative roles of tranexamic acid and tissue plasminogen activator-augmented viscoelastic testing

World Health Organization Fact Sheets [Internet] (2024) [cited 2025 June 14]. Injuries and violence. Available from: https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence

Kauvar DS, Wade CE (2005) The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit Care 9(Suppl 5):S1

Article  PubMed  PubMed Central  Google Scholar 

Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P et al (2013) Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg 74(2):705l706

Google Scholar 

Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma Injury Infect Crit Care 54(6):1127–1130

Article  Google Scholar 

MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M (2003) Early coagulopathy predicts mortality in trauma. J Trauma Inj Infect Crit Care 55(1):39–44

Article  Google Scholar 

Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T et al (2007) Early coagulopathy in multiple injury: an analysis from the German trauma registry on 8724 patients. Injury 38(3):298–304

Article  PubMed  Google Scholar 

Prudovsky I, Kacer D, Zucco VV, Palmeri M, Falank C, Kramer R et al (2022) Tranexamic acid: beyond antifibrinolysis. Transfus (Paris) 62(S1):S301–S312

Article  Google Scholar 

Okamoto S, Okamoto U (1962) Amino-methyl-cyclohexane-carboxylic acid: AMCHA. A new potent inhibitor of fibrinolysis. Keio J Med 11(3):105–115

Article  Google Scholar 

Haberkorn CJ, Severance CC, Wetmore NC, West WG, Ng PC, Cendali F et al (2024) Intramuscular administration of tranexamic acid in a large swine model of hemorrhage with hyperfibrinolysis. J Trauma Acute Care Surg 96(5):735–741

Article  PubMed  Google Scholar 

Spruce MW, Beyer CA, Caples CM, DeSoucy ES, Kashtan HW, Hoareau GL et al (2020) Pharmacokinetics of tranexamic acid given as an intramuscular injection compared to intravenous infusion in a swine model of ongoing hemorrhage. Shock 53(6):754–760

Article  PubMed  Google Scholar 

Warner M, Lowe J, Barnard EBG (2025) Oral tranexamic acid for immediate use in major trauma: implications for mass casualty events. Emerg Med J 42(4):271–272

Article  PubMed  Google Scholar 

American College of Surgeons Committee on Trauma (2018) Advanced trauma life support (ATLS) student course manual. 10th edition. Chic Am Coll Surg. ;22–41

Tucker H, Brohi K, Tan J, Aylwin C, Bloomer R, Cardigan R et al (2023) Association of red blood cells and plasma transfusion versus red blood cell transfusion only with survival for treatment of major traumatic hemorrhage in prehospital setting in England: a multicenter study. Crit Care 27(1):25

Article  PubMed  PubMed Central  Google Scholar 

Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30(6):623

Article  PubMed  Google Scholar 

Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC et al (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma Injury Infect Crit Care 64(5):1211–1217

Article  Google Scholar 

Moore EE, Moore HB, Kornblith LZ, Neal MD, Hoffman M, Mutch NJ et al (2021) Trauma-induced coagulopathy. Nat Rev Dis Primer 7(1):30

Article  Google Scholar 

Moore HB, Moore EE, Neal MD, Sheppard FR, Kornblith LZ, Draxler DF et al (2019) Fibrinolysis shutdown in trauma: historical review and clinical implications. Anesth Analg 129(3):762–773

Article  PubMed  PubMed Central  Google Scholar 

Moore HB (2023) Fibrinolysis shutdown and hypofibrinolysis are not synonymous terms: the clinical significance of differentiating low fibrinolytic states. Semin Thromb Hemost 49(5):433–443

Article  PubMed  Google Scholar 

Chakrabarti R, Hocking ED, Fearnley GR (1969) Reaction pattern to three stresses—electroplexy, surgery, and myocardial infarction—of fibrinolysis and plasma fibrinogen. J Clin Pathol 22(6):659–662

Article  PubMed  PubMed Central  Google Scholar 

Urano T, Suzuki Y, Iwaki T, Sano H, Honkura N, Castellino FJ (2019) Recognition of plasminogen activator inhibitor type 1 as the primary regulator of fibrinolysis. Curr Drug Targets 20(16):1695–1701

Article  PubMed  PubMed Central  Google Scholar 

CRASH-2 trial collaborators Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. The Lancet. 2010 July 3;376(9734):23–32

Gayet-Ageron A, Prieto-Merino D, Ker K, Shakur H, Ageron FX, Roberts I et al (2018) Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. Lancet 391(10116):125–132

Article  PubMed  PubMed Central  Google Scholar 

Guyette FX, Brown JB, Zenati MS, Early-Young BJ, Adams PW, Eastridge BJ et al (2021) Tranexamic acid during prehospital transport in patients at risk for hemorrhage after injury: a double-blind, placebo-controlled, randomized clinical trial. JAMA Surg 156(1):11–20

Google Scholar 

The PATCH-Trauma Investigators and the ANZICS Clinical Trials Group (2023) Prehospital Tranexamic acid for severe trauma. N Engl J Med 13(2):127–136

Neeki MM, Dong F, Toy J, Vaezazizi R, Powell J, Wong D et al (2018) Tranexamic acid in civilian trauma care in the California prehospital antifibrinolytic therapy study. West J Emerg Med 19(6):977–986

Article  PubMed  PubMed Central  Google Scholar 

Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ (2012) Military application of Tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg 147(2):113–119

Article  PubMed  Google Scholar 

CRASH-3 trial collaborators (2019) Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 394(10210):1713–1723

Article  Google Scholar 

Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ (2014) Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg 77(6):852

Article  PubMed  Google Scholar 

Nam JS, Oh CS, Kim JY, Choi DK, Oh AR, Park J et al (2024) A multi-center, double-blind, placebo-controlled, randomized, parallel-group, non-inferiority study to compare the efficacy of goal-directed Tranexamic acid administration based on viscoelastic test versus preemptive Tranexamic acid administration on postoperative bleeding in cardiovascular surgery (GDT trial). Trials 27;25(1):623

Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W (2012) Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med 20(1):15

Article  PubMed  PubMed Central  Google Scholar 

Da Luz LT, Nascimento B, Rizoli S (2013) Thrombelastography (TEG): practical considerations on its clinical use in trauma resuscitation. Scand J Trauma Resusc Emerg Med 21(1):29

Article  PubMed  PubMed Central  Google Scholar 

Whiting D, DiNardo JA (2014) TEG and ROTEM: technology and clinical applications. Am J Hematol 89(2):228–232

Article  PubMed  Google Scholar 

Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA (1999) Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 88(2):312–319

Article  PubMed  Google Scholar 

Kataria S, Juneja D, Singh O (2025) Redefining haemostasis: role of rotational thromboelastometry in critical care settings. World J Crit Care Med 9(2):102521

Google Scholar 

Moore HB, Barrett CD, Moore EE, Pieracci FM, Sauaia A (2024) Differentiating pathologic from physiologic fibrinolysis: not as simple as conventional thrombelastography. J Am Coll Surg 239(1):30

Article  PubMed  Google Scholar 

Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A et al (2016) Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg 263(6):1051–1059

Article  PubMed  Google Scholar 

Cochrane C, Chinna S, Um JY, Dias JD, Hartmann J, Bradley J et al (2020) Site-of-care viscoelastic assay in major trauma improves outcomes and is cost neutral compared with standard coagulation tests. Diagnostics 10(7):486

Article  PubMed  PubMed Central  Google Scholar 

Lammers DT, Marenco CW, Morte KR, Bingham JR, Martin MJ, Eckert MJ (2020) Viscoelastic testing in combat resuscitation: is it time for a new standard? J Trauma Acute Care Surg 89(1):145–152

Article  PubMed  Google Scholar 

Baksaas-Aasen K, Gall LS, Stensballe J, Juffermans NP, Curry N, Maegele M et al (2021) Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): a randomized, controlled trial. Intensive Care Med 47(1):49–59

Article  PubMed  Google Scholar 

Geerts WH, Code KI, Jay RM, Chen E, Szalai JP (1994) A prospective study of venous thromboembolism after major trauma. N Engl J Med 331(24

Comments (0)

No login
gif