Orchestration of antiviral responses within the infected central nervous system

Venkatesan A, Michael BD, Probasco JC, Geocadin RG, Solomon T. Acute encephalitis in immunocompetent adults. Lancet. 2019;393:702–16. https://doi.org/10.1016/S0140-6736(18)32526-1.

Article  PubMed  Google Scholar 

Kennedy PG. Viral encephalitis: causes, differential diagnosis, and management. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 1):i10–15. https://doi.org/10.1136/jnnp.2003.034280.

Article  PubMed  PubMed Central  Google Scholar 

Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles-Cordon M, Martinez-Heras E, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17:760–72. https://doi.org/10.1016/S1474-4422(18)30244-8.

Article  PubMed  PubMed Central  Google Scholar 

Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet. 2014;384:1389–99. https://doi.org/10.1016/S0140-6736(13)62707-5.

Article  PubMed  PubMed Central  Google Scholar 

Turtle L, Solomon T. Japanese encephalitis—the prospects for new treatments. Nat Rev Neurol. 2018;14:298–313. https://doi.org/10.1038/nrneurol.2018.30.

Article  PubMed  Google Scholar 

Kramer LD, Li J, Shi PY. West Nile virus. Lancet Neurol. 2007;6:171–81. https://doi.org/10.1016/S1474-4422(07)70030-3.

Article  CAS  PubMed  Google Scholar 

Carod-Artal FJ, Wichmann O, Farrar J, Gascon J. Neurological complications of dengue virus infection. Lancet Neurol. 2013;12:906–19. https://doi.org/10.1016/S1474-4422(13)70150-9.

Article  PubMed  Google Scholar 

Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of pathogen invasion into the central nervous system. Neuron. 2019;103:771–83. https://doi.org/10.1016/j.neuron.2019.07.015.

Article  CAS  PubMed  Google Scholar 

Dai J, Wang P, Bai F, Town T, Fikrig E. Icam-1 participates in the entry of west nile virus into the central nervous system. J Virol. 2008;82:4164–8. https://doi.org/10.1128/JVI.02621-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR, et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis. 2010;202:1804–12. https://doi.org/10.1086/657416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor MP, Enquist LW. Axonal spread of neuroinvasive viral infections. Trends Microbiol. 2015;23:283–8. https://doi.org/10.1016/j.tim.2015.01.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papa MP, Meuren LM, Coelho S, Lucas C, Mustafá YM, Lemos Matassoli F, et al. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front Microbiol. 2017;8:2557. https://doi.org/10.3389/fmicb.2017.02557.

Article  PubMed  PubMed Central  Google Scholar 

Hasebe R, Suzuki T, Makino Y, Igarashi M, Yamanouchi S, Maeda A, et al. Transcellular transport of West Nile virus-like particles across human endothelial cells depends on residues 156 and 159 of envelope protein. BMC Microbiol. 2010;10:165. https://doi.org/10.1186/1471-2180-10-165.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgärtner W, Geffers R, et al. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci. 2018;38:3060–80. https://doi.org/10.1523/JNEUROSCI.1740-17.2018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalinke U, Bechmann I, Detje CN. Host strategies against virus entry via the olfactory system. Virulence. 2011;2:367–70. https://doi.org/10.4161/viru.2.4.16138.

Article  PubMed  Google Scholar 

Bauer L, Laksono BM, de Vrij F, Kushner SA, Harschnitz O, van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45:358–68. https://doi.org/10.1016/j.tins.2022.02.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koyuncu OO, Perlman DH, Enquist LW. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe. 2013;13:54–66. https://doi.org/10.1016/j.chom.2012.10.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cain MD, Klein NR, Jiang X, Salimi H, Wu Q, Miller MJ, et al. Post-exposure intranasal IFNalpha suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. J Neuroinflamm. 2024;21:24. https://doi.org/10.1186/s12974-023-02960-1.

Article  CAS  Google Scholar 

Ma H, Kim AS, Kafai NM, Earnest JT, Shah AP, Case JB, et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature. 2020;588:308–14. https://doi.org/10.1038/s41586-020-2915-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA. 2013;110:7306–11. https://doi.org/10.1073/pnas.1214441110.

Article  PubMed  PubMed Central  Google Scholar 

Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol. 2013;87:10477–88. https://doi.org/10.1128/JVI.01748-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menasria R, Boivin N, Lebel M, Piret J, Gosselin J, Boivin G. Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection. J Virol. 2013;87:7301–8. https://doi.org/10.1128/JVI.00591-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menendez CM, Carr DJJ. Herpes simplex virus-1 infects the olfactory bulb shortly following ocular infection and exhibits a long-term inflammatory profile in the form of effector and HSV-1-specific T cells. J Neuroinflamm. 2017;14:124. https://doi.org/10.1186/s12974-017-0903-9.

Article  CAS  Google Scholar 

Detje CN, Lienenklaus S, Chhatbar C, Spanier J, Prajeeth CK, Soldner C, et al. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon Beta producers that protect from lethal encephalitis. J Virol. 2015;89:2731–8. https://doi.org/10.1128/JVI.02044-14.

Article  CAS  PubMed  Google Scholar 

Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, et al. Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. J Virol. 2016;90:2031–8. https://doi.org/10.1128/JVI.02979-15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, et al. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J Immunol. 2009;182:2297–304. https://doi.org/10.4049/jimmunol.0800596.

Article  CAS  PubMed  Google Scholar 

Chhatbar C, Detje CN, Grabski E, Borst K, Spanier J, Ghita L, et al. Type I interferon receptor signaling of neurons and astrocytes regulates microglia activation during viral encephalitis. Cell Rep. 2018;25:118–29.e114. https://doi.org/10.1016/j.celrep.2018.09.003.

Comments (0)

No login
gif