GPNMB disrupts SNARE complex assembly to maintain bacterial proliferation within macrophages

Wang C, Yang Y, Cao Y, Liu K, Shi H, Guo X, et al. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci. 2023;11:432–44.

Article  CAS  PubMed  Google Scholar 

Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1356540.

Article  PubMed  PubMed Central  Google Scholar 

Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol. 2014;12:101–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petit TJP, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol. 2022;30:736–48.

Article  CAS  PubMed  Google Scholar 

Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22:733–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151:1256–69.

Article  CAS  PubMed  Google Scholar 

Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol. 2018;217:2633–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng D, Tong M, Zhang S, Pan Y, Zhao Y, Zhong Q, et al. Human YKT6 forms priming complex with STX17 and SNAP29 to facilitate autophagosome-lysosome fusion. Cell Rep. 2024;43:113760.

Article  CAS  PubMed  Google Scholar 

Mi Z, Wang Z, Xue X, Liu T, Wang C, Sun L, et al. The immune-suppressive landscape in lepromatous leprosy revealed by single-cell RNA sequencing. Cell Discov. 2022;8:2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fava VM, Dallmann-Sauer M, Schurr E. Genetics of leprosy: today and beyond. Hum Genet. 2020;139:835–46.

Article  PubMed  Google Scholar 

Montoya DJ, Andrade P, Silva BJA, Teles RMB, Ma F, Bryson B, et al. Dual RNA-seq of human leprosy lesions identifies bacterial determinants linked to host immune response. Cell Rep. 2019;26:3574–85.e3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mi Z, Liu H, Zhang F. Advances in the pathogenic, genetic and immunological studies of leprosy. hLife. 2024;2:6–17.

Article  Google Scholar 

Evans MJ, Levy L. Ultrastructural changes in cells of the mouse footpad infected with Mycobacterium leprae. Infect Immun. 1972;5:238–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva BJ, Barbosa MG, Andrade PR, Ferreira H, Nery JA, Côrte-Real S, et al. Autophagy is an innate mechanism associated with leprosy polarization. PLoS Pathog. 2017;13:e1006103.

Article  PubMed  PubMed Central  Google Scholar 

Cerqueira DDN, Pereira ALS, da Costa AEC, de Souza TJ, de Sousa Fernandes MS, Souto FO, et al. Xenophagy as a strategy for Mycobacterium leprae elimination during type 1 or type 2 leprosy reactions: a systematic review. Pathogens. 2023;12:1455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mi Z, Liu H, Zhang F. Advances in the immunology and genetics of leprosy. Front Immunol. 2020;11:567.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung JS, Yudate T, Tomihari M, Akiyoshi H, Cruz PD Jr., Ariizumi K. Binding of DC-HIL to dermatophytic fungi induces tyrosine phosphorylation and potentiates antigen presenting cell function. J Immunol. 2009;183:5190–8.

Article  CAS  PubMed  Google Scholar 

Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol. 2008;10:1027–39.

Article  CAS  PubMed  Google Scholar 

Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, et al. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep. 2020;10:4930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science. 2022;377:eabk0637.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maric G, Annis MG, MacDonald PA, Russo C, Perkins D, Siwak DR, et al. GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene. 2019;38:5294–307.

Article  CAS  PubMed  Google Scholar 

Järve A, Mühlstedt S, Qadri F, Nickl B, Schulz H, Hübner N, et al. Adverse left ventricular remodeling by glycoprotein nonmetastatic melanoma protein B in myocardial infarction. FASEB J. 2017;31:556–68.

Article  PubMed  Google Scholar 

Hu X, Zhang P, Xu Z, Chen H, Xie X. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem. 2013;114:2729–37.

Article  CAS  PubMed  Google Scholar 

Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T-cell activation in GBM. EBioMedicine. 2022;83:104239.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: a key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J. 2020;34:8810–23.

Article  CAS  PubMed  Google Scholar 

Gong XM, Li YF, Luo J, Wang JQ, Wei J, Wang JQ, et al. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nat Metab. 2019;1:570–83.

Article  CAS  PubMed  Google Scholar 

Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The role of GPNMB in inflammation. Front Immunol. 2021;12:674739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, et al. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine. 2024;108:105342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5:e12093.

Article  PubMed  PubMed Central  Google Scholar 

Loftus SK, Antonellis A, Matera I, Renaud G, Baxter LL, Reid D, et al. Gpnmb is a melanoblast-expressed, MITF-dependent gene. Pigment Cell Melanoma Res. 2009;22:99–110.

Article  CAS 

Comments (0)

No login
gif