Wang C, Yang Y, Cao Y, Liu K, Shi H, Guo X, et al. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci. 2023;11:432–44.
Article CAS PubMed Google Scholar
Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1356540.
Article PubMed PubMed Central Google Scholar
Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol. 2014;12:101–14.
Article CAS PubMed PubMed Central Google Scholar
Petit TJP, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol. 2022;30:736–48.
Article CAS PubMed Google Scholar
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22:733–50.
Article CAS PubMed PubMed Central Google Scholar
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151:1256–69.
Article CAS PubMed Google Scholar
Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol. 2018;217:2633–45.
Article CAS PubMed PubMed Central Google Scholar
Zheng D, Tong M, Zhang S, Pan Y, Zhao Y, Zhong Q, et al. Human YKT6 forms priming complex with STX17 and SNAP29 to facilitate autophagosome-lysosome fusion. Cell Rep. 2024;43:113760.
Article CAS PubMed Google Scholar
Mi Z, Wang Z, Xue X, Liu T, Wang C, Sun L, et al. The immune-suppressive landscape in lepromatous leprosy revealed by single-cell RNA sequencing. Cell Discov. 2022;8:2.
Article CAS PubMed PubMed Central Google Scholar
Fava VM, Dallmann-Sauer M, Schurr E. Genetics of leprosy: today and beyond. Hum Genet. 2020;139:835–46.
Montoya DJ, Andrade P, Silva BJA, Teles RMB, Ma F, Bryson B, et al. Dual RNA-seq of human leprosy lesions identifies bacterial determinants linked to host immune response. Cell Rep. 2019;26:3574–85.e3.
Article CAS PubMed PubMed Central Google Scholar
Mi Z, Liu H, Zhang F. Advances in the pathogenic, genetic and immunological studies of leprosy. hLife. 2024;2:6–17.
Evans MJ, Levy L. Ultrastructural changes in cells of the mouse footpad infected with Mycobacterium leprae. Infect Immun. 1972;5:238–47.
Article CAS PubMed PubMed Central Google Scholar
Silva BJ, Barbosa MG, Andrade PR, Ferreira H, Nery JA, Côrte-Real S, et al. Autophagy is an innate mechanism associated with leprosy polarization. PLoS Pathog. 2017;13:e1006103.
Article PubMed PubMed Central Google Scholar
Cerqueira DDN, Pereira ALS, da Costa AEC, de Souza TJ, de Sousa Fernandes MS, Souto FO, et al. Xenophagy as a strategy for Mycobacterium leprae elimination during type 1 or type 2 leprosy reactions: a systematic review. Pathogens. 2023;12:1455.
Article CAS PubMed PubMed Central Google Scholar
Mi Z, Liu H, Zhang F. Advances in the immunology and genetics of leprosy. Front Immunol. 2020;11:567.
Article CAS PubMed PubMed Central Google Scholar
Chung JS, Yudate T, Tomihari M, Akiyoshi H, Cruz PD Jr., Ariizumi K. Binding of DC-HIL to dermatophytic fungi induces tyrosine phosphorylation and potentiates antigen presenting cell function. J Immunol. 2009;183:5190–8.
Article CAS PubMed Google Scholar
Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol. 2008;10:1027–39.
Article CAS PubMed Google Scholar
Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, et al. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep. 2020;10:4930.
Article CAS PubMed PubMed Central Google Scholar
Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science. 2022;377:eabk0637.
Article CAS PubMed PubMed Central Google Scholar
Maric G, Annis MG, MacDonald PA, Russo C, Perkins D, Siwak DR, et al. GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene. 2019;38:5294–307.
Article CAS PubMed Google Scholar
Järve A, Mühlstedt S, Qadri F, Nickl B, Schulz H, Hübner N, et al. Adverse left ventricular remodeling by glycoprotein nonmetastatic melanoma protein B in myocardial infarction. FASEB J. 2017;31:556–68.
Hu X, Zhang P, Xu Z, Chen H, Xie X. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem. 2013;114:2729–37.
Article CAS PubMed Google Scholar
Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T-cell activation in GBM. EBioMedicine. 2022;83:104239.
Article CAS PubMed PubMed Central Google Scholar
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: a key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J. 2020;34:8810–23.
Article CAS PubMed Google Scholar
Gong XM, Li YF, Luo J, Wang JQ, Wei J, Wang JQ, et al. Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nat Metab. 2019;1:570–83.
Article CAS PubMed Google Scholar
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The role of GPNMB in inflammation. Front Immunol. 2021;12:674739.
Article CAS PubMed PubMed Central Google Scholar
Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, et al. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine. 2024;108:105342.
Article CAS PubMed PubMed Central Google Scholar
Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5:e12093.
Article PubMed PubMed Central Google Scholar
Loftus SK, Antonellis A, Matera I, Renaud G, Baxter LL, Reid D, et al. Gpnmb is a melanoblast-expressed, MITF-dependent gene. Pigment Cell Melanoma Res. 2009;22:99–110.
Comments (0)