Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling

Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145:e153–e639.

Article  PubMed  Google Scholar 

Perkins GD, Callaway CW, Haywood K, Neumar RW, Lilja G, Rowland MJ, et al. Brain injury after cardiac arrest. Lancet. 2021;398:1269–78.

Article  PubMed  Google Scholar 

Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90.

Article  PubMed  PubMed Central  Google Scholar 

Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47:1393–414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng G, Carter J, Traystman RJ, Wagner DH, Herson PS. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol. 2014;274:132–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang Y, Zhu J, Wang D, Li H, He Y, Liu K, et al. NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflamm. 2020;17:219.

Zhang C, Brandon NR, Koper K, Tang P, Xu Y, Dou H. Invasion of peripheral immune cells into brain parenchyma after cardiac arrest and resuscitation. Aging Dis. 2018;9:412–25.

Article  PubMed  PubMed Central  Google Scholar 

Guschlbauer M, Hoppe S, Geburek F, Feige K, Huber K. In vitro effects of lidocaine on the contractility of equine jejunal smooth muscle challenged by ischaemia-reperfusion injury. Equine Vet J. 2010;42:53–58.

Article  CAS  PubMed  Google Scholar 

Guschlbauer M, Feige K, Geburek F, Hoppe S, Hopster K, Pröpsting MJ, et al. Effects of in vivo lidocaine administration at the time of ischemia and reperfusion on in vitro contractility of equine jejunal smooth muscle. Am J Vet Res. 2011;72:1449–55.

Article  CAS  PubMed  Google Scholar 

De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2019;176:676.

Article  PubMed  Google Scholar 

Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15:929–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brea D, Poon C, Benakis C, Lubitz G, Murphy M, Iadecola C, et al. Stroke affects intestinal immune cell trafficking to the central nervous system. Brain Behav Immun. 2021;96:295–302.

Liu Q, Johnson EM, Lam RK, Wang Q, Bo YH, Wilson EN, et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol. 2019;20:1023–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korth U, Krieter H, Denz C, Janke C, Ellinger K, Bertsch T, et al. Intestinal ischaemia during cardiac arrest and resuscitation: comparative analysis of extracellular metabolites by microdialysis. Resuscitation 2003;58:209–17.

Article  CAS  PubMed  Google Scholar 

Schroeder DC, Maul AC, Mahabir E, Koxholt I, Yan X, Padosch SA, et al. Evaluation of small intestinal damage in a rat model of 6 min cardiac arrest. Bmc Anesthesiol. 2018;18:61.

Article  PubMed  PubMed Central  Google Scholar 

L’Her E, Cassaz C, Le Gal G, Cholet F, Renault A, Boles JM. Gut dysfunction and endoscopic lesions after out-of-hospital cardiac arrest. Resuscitation 2005;66:331–4.

Article  PubMed  Google Scholar 

Hoftun FB, Langeland H, Ueland T, Michelsen AE, Jørstad KA, Klepstad P, et al. Intestinal injury in cardiac arrest is associated with multiple organ dysfunction: A prospective cohort study. Resuscitation 2023;185:109748.

Article  Google Scholar 

Mattsson N, Zetterberg H, Nielsen N, Blennow K, Dankiewicz J, Friberg H, et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 2017;82:665–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mlynash M, Campbell DM, Leproust EM, Fischbein NJ, Bammer R, Eyngorn I, et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke 2010;41:1665–72.

Article  PubMed  PubMed Central  Google Scholar 

Fuernau G, Beck J, Desch S, Eitel I, Jung C, Erbs S, et al. Mild hypothermia in cardiogenic shock complicating myocardial infarction. Circulation 2019;139:448–57.

Article  CAS  PubMed  Google Scholar 

Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, et al. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 2015;131:1061–70.

Article  CAS  PubMed  Google Scholar 

Tammaro A, Derive M, Gibot S, Leemans JC, Florquin S, Dessing MC. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharm Ther. 2017;177:81–95.

Article  CAS  Google Scholar 

Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr. 2015;2:144.

Wu X, Zeng H, Xu C, Chen H, Fan L, Zhou H, et al. TREM1 regulates neuroinflammatory injury by modulate proinflammatory subtype transition of microglia and formation of neutrophil extracellular traps via interaction with SYK in experimental subarachnoid hemorrhage. Front Immunol. 2021;12:766178.

Xie Y, He W, Ma L, Ren R, Yang S, Lu Q. Endothelial TREM‐1 receptor regulates the blood–brain barrier integrity after intracerebral hemorrhage in mice via SYK/β‐catenin signaling. Cns Neurosci Ther. 2023;29:3228–38.

Deng F, Zhao BC, Yang X, Lin ZB, Sun QS, Wang YF, et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes. 2021;13:1–21.

Article  PubMed  Google Scholar 

Chen X, Wu R, Li L, Zeng Y, Chen J, Wei M, et al. Pregnancy-induced changes to the gut microbiota drive macrophage pyroptosis and exacerbate septic inflammation. Immunity 2023;56:336–52.

Article  CAS  PubMed  Google Scholar 

Caër C, Gorreja F, Forsskåhl SK, Brynjolfsson SF, Szeponik L, Magnusson MK, et al. TREM-1+ Macrophages Define a Pathogenic Cell Subset in the Intestine of Crohn’s Disease Patients. J Crohns Colitis. 2021;15:1346–61.

Article  PubMed  PubMed Central  Google Scholar 

Zeng Q, Jin C, Ao L, Cleveland JJ, Song R, Xu D, et al. Cross-talk between the Toll-like receptor 4 and Notch1 pathways augments the inflammatory response in the interstitial cells of stenotic human aortic valves. Circulation. 2012;126:S222-S230.

Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr. 2021;61:836–54.

Article  CAS  PubMed  Google Scholar 

Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C, van der Woude CJ, et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol. 2012;42:3150–66.

Article  CAS  PubMed  Google Scholar 

Xu K, Gao X, Xia G, Chen M, Zeng N, Wang S, et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021;70:1486–94.

Article  CAS  Google Scholar 

Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. Plos Pathog. 2014;10:e1003900.

Article  PubMed  PubMed Central  Google Scholar 

Zysset D, Weber B, Rihs S, Brasseit J, Freigang S, Riether C, et al. TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nat Commun. 2016;7:13151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yasuda T, Takeyama Y, Ueda T, Shinzeki M, Sawa H, Takahiro N, et al. Increased levels of soluble triggering receptor expressed on myeloid cells-1 in patients with acute pancreatitis. Crit Care Med. 2008;36:2048–53.

Article  CAS  PubMed  Google Scholar 

Tyler PM, Bucklin ML, Zhao M, Maher TJ, Rice AJ, Ji W, et al. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat Immunol. 2021;22:1118–26.

Comments (0)

No login
gif