Prospective Monitoring of New Drugs in Older Adults with and without Frailty: Near-Real-Time Assessment of Effectiveness and Safety of Oral Anticoagulants in Medicare Data

Proietti M, Romiti GF, Raparelli V, et al. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: a systematic review and meta-analysis of 1,187,000 patients. Ageing Res Rev. 2022;79: 101652. https://doi.org/10.1016/j.arr.2022.101652.

Article  CAS  PubMed  Google Scholar 

Ko D, Lin KJ, Bessette LG, et al. Trends in use of oral anticoagulants in older adults with newly diagnosed atrial fibrillation, 2010–2020. JAMA Netw Open. 2022;5: e2242964. https://doi.org/10.1001/jamanetworkopen.2022.42964.

Article  PubMed  PubMed Central  Google Scholar 

Dalgaard F, Xu H, Matsouaka RA, et al. Management of atrial fibrillation in older patients by morbidity burden: insights from get with the guidelines-atrial fibrillation. J Am Heart Assoc. 2020;9: e017024. https://doi.org/10.1161/jaha.120.017024.

Article  PubMed  PubMed Central  Google Scholar 

Wilkinson C, Wu J, Searle SD, et al. Clinical outcomes in patients with atrial fibrillation and frailty: insights from the ENGAGE AF-TIMI 48 trial. BMC Med. 2020;18:401. https://doi.org/10.1186/s12916-020-01870-w.

Article  PubMed  PubMed Central  Google Scholar 

Kim DH, Pawar A, Gagne JJ, et al. Frailty and clinical outcomes of direct oral anticoagulants versus warfarin in older adults with atrial fibrillation: a cohort study. Ann Intern Med. 2021;174(9):1214–23. https://doi.org/10.7326/m20-7141.

Article  PubMed  PubMed Central  Google Scholar 

Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92. https://doi.org/10.1056/NEJMoa1107039.

Article  CAS  PubMed  Google Scholar 

Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91. https://doi.org/10.1056/NEJMoa1009638.

Article  CAS  PubMed  Google Scholar 

Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51. https://doi.org/10.1056/NEJMoa0905561.

Article  CAS  PubMed  Google Scholar 

Kim DH, Schneeweiss S, Glynn RJ, et al. Measuring frailty in medicare data: development and validation of a claims-based frailty index. J Gerontol A Biol Sci Med Sci. 2018;73:980–7. https://doi.org/10.1093/gerona/glx229.

Article  PubMed  Google Scholar 

Kim DH, Patorno E, Pawar A, et al. Measuring frailty in administrative claims data: comparative performance of four claims-based frailty measures in the U.S. Medicare Data. J Gerontol A Biol Sci Med Sci. 2020;75:1120–5. https://doi.org/10.1093/gerona/glz224.

Article  PubMed  Google Scholar 

Gautam N, Bessette L, Pawar A, Levin R, Kim DH. Updating international classification of diseases 9th revision to 10th revision of a claims-based frailty index. J Gerontol A Biol Sci Med Sci. 2021;76:1316–7. https://doi.org/10.1093/gerona/glaa150.

Article  PubMed  Google Scholar 

Gagne JJ, Glynn RJ, Rassen JA, et al. Active safety monitoring of newly marketed medications in a distributed data network: application of a semi-automated monitoring system. Clin Pharmacol Ther. 2012;92:80–6. https://doi.org/10.1038/clpt.2011.369.

Article  CAS  PubMed  Google Scholar 

Gagne JJ, Wang SV, Rassen JA, Schneeweiss S. A modular, prospective, semi-automated drug safety monitoring system for use in a distributed data environment. Pharmacoepidemiol Drug Saf. 2014;23:619–27. https://doi.org/10.1002/pds.3616.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gagne JJ, Rassen JA, Choudhry NK, et al. Near-real-time monitoring of new drugs: an application comparing prasugrel versus clopidogrel. Drug Saf. 2014;37:151–61. https://doi.org/10.1007/s40264-014-0136-0.

Article  CAS  PubMed  Google Scholar 

Gagne JJ, Bykov K, Najafzadeh M, et al. Prospective benefit-risk monitoring of new drugs for rapid assessment of net favorability in electronic health care data. Value Health. 2015;18:1063–9. https://doi.org/10.1016/j.jval.2015.08.011.

Article  PubMed  Google Scholar 

Festa N, Shi SM, Kim DH. Accuracy of diagnosis and health service codes in identifying frailty in Medicare data. BMC Geriatr. 2020;20:329. https://doi.org/10.1186/s12877-020-01739-w.

Article  PubMed  PubMed Central  Google Scholar 

Kim DH, Glynn RJ, Avorn J, et al. Validation of a claims-based frailty index against physical performance and adverse health outcomes in the health and retirement study. J Gerontol A Biol Sci Med Sci. 2019;74:1271–6. https://doi.org/10.1093/gerona/gly197.

Article  PubMed  Google Scholar 

Sison SDM, Shi SM, Oh G, et al. Claims-based frailty index and its relationship with commonly used clinical frailty measures. J Gerontol A Biol Sci Med Sci. 2024. https://doi.org/10.1093/gerona/glae094.

Article  PubMed  Google Scholar 

Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51. https://doi.org/10.1016/0895-4356(94)90129-5.

Article  CAS  PubMed  Google Scholar 

Birman-Deych E, Waterman AD, Yan Y, et al. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care. 2005;43:480–5. https://doi.org/10.1097/01.mlr.0000160417.39497.a9.

Article  PubMed  Google Scholar 

Arnason T, Wells PS, van Walraven C, Forster AJ. Accuracy of coding for possible warfarin complications in hospital discharge abstracts. Thromb Res. 2006;118:253–62. https://doi.org/10.1016/j.thromres.2005.06.015.

Article  CAS  PubMed  Google Scholar 

Cunningham A, Stein CM, Chung CP, et al. An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol Drug Saf. 2011;20:560–6. https://doi.org/10.1002/pds.2109.

Article  PubMed  PubMed Central  Google Scholar 

Lin KJ, Schneeweiss S, Pawar A, et al. Using a simple prescription gap to determine warfarin discontinuation can lead to substantial misclassification. Thromb Haemost. 2022;122(3):386–93. https://doi.org/10.1055/a-1508-8187.

Article  PubMed  Google Scholar 

Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:150–61. https://doi.org/10.1002/pst.433.

Article  PubMed  Google Scholar 

Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2:121–45. https://doi.org/10.1177/096228029300200202.

Article  CAS  PubMed  Google Scholar 

Wang SV, Verpillat P, Rassen JA, et al. Transparency and reproducibility of observational cohort studies using large healthcare databases. Clin Pharmacol Ther. 2016;99:325–32. https://doi.org/10.1002/cpt.329.

Article  CAS  PubMed  Google Scholar 

Franklin JM, Patorno E, Desai RJ, et al. Emulating randomized clinical trials with nonrandomized real-world evidence studies: first results from the RCT DUPLICATE Initiative. Circulation. 2021;143:1002–13. https://doi.org/10.1161/circulationaha.120.051718.

Article  PubMed  Google Scholar 

Rose AJ, Goldberg R, McManus DD, et al. Anticoagulant prescribing for non-valvular atrial fibrillation in the veterans health administration. J Am Heart Assoc. 2019;8: e012646. https://doi.org/10.1161/jaha.119.012646.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DH. Measuring frailty in health care databases for clinical care and research. Ann Geriatr Med Res. 2020;24:62–74. https://doi.org/10.4235/agmr.20.0002.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif