Proietti M, Romiti GF, Raparelli V, et al. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: a systematic review and meta-analysis of 1,187,000 patients. Ageing Res Rev. 2022;79: 101652. https://doi.org/10.1016/j.arr.2022.101652.
Article CAS PubMed Google Scholar
Ko D, Lin KJ, Bessette LG, et al. Trends in use of oral anticoagulants in older adults with newly diagnosed atrial fibrillation, 2010–2020. JAMA Netw Open. 2022;5: e2242964. https://doi.org/10.1001/jamanetworkopen.2022.42964.
Article PubMed PubMed Central Google Scholar
Dalgaard F, Xu H, Matsouaka RA, et al. Management of atrial fibrillation in older patients by morbidity burden: insights from get with the guidelines-atrial fibrillation. J Am Heart Assoc. 2020;9: e017024. https://doi.org/10.1161/jaha.120.017024.
Article PubMed PubMed Central Google Scholar
Wilkinson C, Wu J, Searle SD, et al. Clinical outcomes in patients with atrial fibrillation and frailty: insights from the ENGAGE AF-TIMI 48 trial. BMC Med. 2020;18:401. https://doi.org/10.1186/s12916-020-01870-w.
Article PubMed PubMed Central Google Scholar
Kim DH, Pawar A, Gagne JJ, et al. Frailty and clinical outcomes of direct oral anticoagulants versus warfarin in older adults with atrial fibrillation: a cohort study. Ann Intern Med. 2021;174(9):1214–23. https://doi.org/10.7326/m20-7141.
Article PubMed PubMed Central Google Scholar
Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92. https://doi.org/10.1056/NEJMoa1107039.
Article CAS PubMed Google Scholar
Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91. https://doi.org/10.1056/NEJMoa1009638.
Article CAS PubMed Google Scholar
Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51. https://doi.org/10.1056/NEJMoa0905561.
Article CAS PubMed Google Scholar
Kim DH, Schneeweiss S, Glynn RJ, et al. Measuring frailty in medicare data: development and validation of a claims-based frailty index. J Gerontol A Biol Sci Med Sci. 2018;73:980–7. https://doi.org/10.1093/gerona/glx229.
Kim DH, Patorno E, Pawar A, et al. Measuring frailty in administrative claims data: comparative performance of four claims-based frailty measures in the U.S. Medicare Data. J Gerontol A Biol Sci Med Sci. 2020;75:1120–5. https://doi.org/10.1093/gerona/glz224.
Gautam N, Bessette L, Pawar A, Levin R, Kim DH. Updating international classification of diseases 9th revision to 10th revision of a claims-based frailty index. J Gerontol A Biol Sci Med Sci. 2021;76:1316–7. https://doi.org/10.1093/gerona/glaa150.
Gagne JJ, Glynn RJ, Rassen JA, et al. Active safety monitoring of newly marketed medications in a distributed data network: application of a semi-automated monitoring system. Clin Pharmacol Ther. 2012;92:80–6. https://doi.org/10.1038/clpt.2011.369.
Article CAS PubMed Google Scholar
Gagne JJ, Wang SV, Rassen JA, Schneeweiss S. A modular, prospective, semi-automated drug safety monitoring system for use in a distributed data environment. Pharmacoepidemiol Drug Saf. 2014;23:619–27. https://doi.org/10.1002/pds.3616.
Article CAS PubMed PubMed Central Google Scholar
Gagne JJ, Rassen JA, Choudhry NK, et al. Near-real-time monitoring of new drugs: an application comparing prasugrel versus clopidogrel. Drug Saf. 2014;37:151–61. https://doi.org/10.1007/s40264-014-0136-0.
Article CAS PubMed Google Scholar
Gagne JJ, Bykov K, Najafzadeh M, et al. Prospective benefit-risk monitoring of new drugs for rapid assessment of net favorability in electronic health care data. Value Health. 2015;18:1063–9. https://doi.org/10.1016/j.jval.2015.08.011.
Festa N, Shi SM, Kim DH. Accuracy of diagnosis and health service codes in identifying frailty in Medicare data. BMC Geriatr. 2020;20:329. https://doi.org/10.1186/s12877-020-01739-w.
Article PubMed PubMed Central Google Scholar
Kim DH, Glynn RJ, Avorn J, et al. Validation of a claims-based frailty index against physical performance and adverse health outcomes in the health and retirement study. J Gerontol A Biol Sci Med Sci. 2019;74:1271–6. https://doi.org/10.1093/gerona/gly197.
Sison SDM, Shi SM, Oh G, et al. Claims-based frailty index and its relationship with commonly used clinical frailty measures. J Gerontol A Biol Sci Med Sci. 2024. https://doi.org/10.1093/gerona/glae094.
Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51. https://doi.org/10.1016/0895-4356(94)90129-5.
Article CAS PubMed Google Scholar
Birman-Deych E, Waterman AD, Yan Y, et al. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care. 2005;43:480–5. https://doi.org/10.1097/01.mlr.0000160417.39497.a9.
Arnason T, Wells PS, van Walraven C, Forster AJ. Accuracy of coding for possible warfarin complications in hospital discharge abstracts. Thromb Res. 2006;118:253–62. https://doi.org/10.1016/j.thromres.2005.06.015.
Article CAS PubMed Google Scholar
Cunningham A, Stein CM, Chung CP, et al. An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol Drug Saf. 2011;20:560–6. https://doi.org/10.1002/pds.2109.
Article PubMed PubMed Central Google Scholar
Lin KJ, Schneeweiss S, Pawar A, et al. Using a simple prescription gap to determine warfarin discontinuation can lead to substantial misclassification. Thromb Haemost. 2022;122(3):386–93. https://doi.org/10.1055/a-1508-8187.
Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:150–61. https://doi.org/10.1002/pst.433.
Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2:121–45. https://doi.org/10.1177/096228029300200202.
Article CAS PubMed Google Scholar
Wang SV, Verpillat P, Rassen JA, et al. Transparency and reproducibility of observational cohort studies using large healthcare databases. Clin Pharmacol Ther. 2016;99:325–32. https://doi.org/10.1002/cpt.329.
Article CAS PubMed Google Scholar
Franklin JM, Patorno E, Desai RJ, et al. Emulating randomized clinical trials with nonrandomized real-world evidence studies: first results from the RCT DUPLICATE Initiative. Circulation. 2021;143:1002–13. https://doi.org/10.1161/circulationaha.120.051718.
Rose AJ, Goldberg R, McManus DD, et al. Anticoagulant prescribing for non-valvular atrial fibrillation in the veterans health administration. J Am Heart Assoc. 2019;8: e012646. https://doi.org/10.1161/jaha.119.012646.
Article CAS PubMed PubMed Central Google Scholar
Kim DH. Measuring frailty in health care databases for clinical care and research. Ann Geriatr Med Res. 2020;24:62–74. https://doi.org/10.4235/agmr.20.0002.
Comments (0)