van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57:734–44. https://doi.org/10.1128/AAC.01568-12.
Article CAS PubMed PubMed Central Google Scholar
Tantranont N, Luque Y, Hsiao M, Haute C, Gaber L, Barrios R, et al. Vancomycin-associated tubular casts and vancomycin nephrotoxicity. Kidney Int Rep. 2021;6:1912–22. https://doi.org/10.1016/j.ekir.2021.04.035.
Article PubMed PubMed Central Google Scholar
Arimura Y, Yano T, Hirano M, Sakamoto Y, Egashira N, Oishi R. Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic Biol Med. 2012;52:1865–73. https://doi.org/10.1016/j.freeradbiomed.2012.02.038.
Article CAS PubMed Google Scholar
Sakamoto Y, Yano T, Hanada Y, Takeshita A, Inagaki F, Masuda S, et al. Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells. Eur J Pharmacol. 2017;800:48–56. https://doi.org/10.1016/j.ejphar.2017.02.025.
Article CAS PubMed Google Scholar
Kan WC, Chen YC, Wu VC, Shiao CC. Vancomycin-associated acute kidney injury: a narrative review from pathophysiology to clinical application. Int J Mol Sci. 2022;23:2052. https://doi.org/10.3390/ijms23042052.
Article CAS PubMed PubMed Central Google Scholar
Oktem F, Arslan MK, Ozguner F, Candir O, Yilmaz HR, Ciris M, Uz E. In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology. 2005;215:227–33. https://doi.org/10.1016/j.tox.2005.07.009.
Article CAS PubMed Google Scholar
Hashimoto N, Kimura T, Hamada Y, Niwa T, Hanai Y, Chuma M, et al. Candidates for area under the concentration-time curve (AUC)-guided dosing and risk reduction based on analyses of risk factors associated with nephrotoxicity in vancomycin-treated patients. J Glob Antimicrob Resist. 2021;27:12–9. https://doi.org/10.1016/j.jgar.2021.07.018.
Article CAS PubMed Google Scholar
Vance-Bryan K, Rotschafer JC, Gilliland SS, Rodvold KA, Fitzgerald CM, Guay DR. A comparative assessment of vancomycin-associated nephrotoxicity in the young versus the elderly hospitalized patient. J Antimicrob Chemother. 1994;33:811–21. https://doi.org/10.1093/jac/33.4.811.
Article CAS PubMed Google Scholar
Hall RG 2nd, Hazlewood KA, Brouse SD, Giuliano CA, Haase KK, Frei CR, et al. Empiric guideline-recommended weight-based vancomycin dosing and nephrotoxicity rates in patients with methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Pharmacol Toxicol. 2013;14:12. https://doi.org/10.1186/2050-6511-14-12.
Article CAS PubMed PubMed Central Google Scholar
Xi L, Li S, Chen M, Huang X, Li N, Chen N, et al. Age-related differences in vancomycin-associated nephrotoxicity and efficacy in methicillin-resistant Staphylococcus aureus infection: a comparative study between elderly and adult patients. Antibiotics (Basel). 2024;13:324. https://doi.org/10.3390/antibiotics13040324.
Article CAS PubMed PubMed Central Google Scholar
Takigawa M, Masutomi H, Shimazaki Y, Arai T, Lee J, Ishii T, et al. Age-dependent changes in vancomycin-induced nephrotoxicity in mice. J Toxicol Pathol. 2019;32:57–66. https://doi.org/10.1293/tox.2018-0036.
Article CAS PubMed Google Scholar
Takigawa M, Tanaka H, Obara T, Maeda Y, Satou M, Shimazaki Y, et al. Effects of aging on vancomycin-induced nephrotoxicity in the elderly. Pharmacometrics. 2020;7:49–55.
Wang Y, Dai N, Wei W, Jiang C. Outcomes and nephrotoxicity associated with vancomycin treatment in patients 80 years and older. Clin Interv Aging. 2021;16:1023–35. https://doi.org/10.2147/CIA.S308878.
Article CAS PubMed PubMed Central Google Scholar
Kabata N, Fujiwara S, Sofue N, Kawasaki S, Hashimoto T, Wakamori H, et al. Risk factor analysis for drug-induced kidney injury resulting from short-term vancomycin therapy in elderly patients. J Geriatr Pharm. 2021;3:70–7.
Tacconelli E, Pop-Vicas AE, D’Agata EM. Increased mortality among elderly patients with meticillin-resistant Staphylococcus aureus bacteraemia. J Hosp Infect. 2006;64:251–6. https://doi.org/10.1016/j.jhin.2006.07.001.
Article CAS PubMed Google Scholar
Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.
Article CAS PubMed Google Scholar
Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77:835–64. https://doi.org/10.1093/ajhp/zxaa036.
Matsumoto K, Oda K, Shoji K, Hanai Y, Takahashi Y, Fujii S, et al. Clinical practice guidelines for therapeutic drug monitoring of vancomycin in the framework of model-informed precision dosing: a consensus review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics. 2022;14:489. https://doi.org/10.3390/pharmaceutics14030489.
Article CAS PubMed PubMed Central Google Scholar
Oda K, Hashiguchi Y, Kimura T, Tsuji Y, Shoji K, Takahashi Y, et al. Performance of area under the concentration-time curve estimations of vancomycin with limited sampling by a newly developed web application. Pharm Res. 2021;38:637–46. https://doi.org/10.1007/s11095-021-03030-y.
Article CAS PubMed Google Scholar
Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, Hori R. Population pharmacokinetics of vancomycin in Japanese adult patients. Ther Drug Monit. 1998;20:139–48. https://doi.org/10.1097/00007691-199804000-00003.
Article CAS PubMed Google Scholar
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84. https://doi.org/10.1159/000339789.
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7. https://doi.org/10.1016/S0140-6736(07)61602-X.
Uekusa S, Hanai Y, Hirayama S, Yokoo T, Hasegawa T, Shimoyama K, et al. Vancomycin hydrochloride as a risk factor for acute kidney injury: a retrospective study. Pharmacology. 2023;108:444–50. https://doi.org/10.1159/000531511.
Article CAS PubMed Google Scholar
Higashi T, Tsukamoto H, Kodawara T, Igarashi T, Watanabe K, Yano R, et al. Evaluation of risk factors for nephrotoxicity associated with high-dose vancomycin in Japanese patients. Pharmazie. 2021;76:114–8. https://doi.org/10.1691/ph.2021.0138.
Article CAS PubMed Google Scholar
Imai S, Kadomura S, Miyai T, Kashiwagi H, Sato Y, Sugawara M, Takekuma Y. Using Japanese big data to investigate novel factors and their high-risk combinations that affect vancomycin-induced nephrotoxicity. Br J Clin Pharmacol. 2022;88:3241–55. https://doi.org/10.1111/bcp.15252.
Article CAS PubMed Google Scholar
Edwina AE, Dreesen E, Gijsen M, van den Hout HC, Desmet S, Flamaing J, et al. Decreased kidney function explains higher vancomycin exposure in older adults. Drugs Aging. 2024;41:753–62. https://doi.org/10.1007/s40266-024-01140-x.
Article CAS PubMed Google Scholar
Rutter WC, Cox JN, Martin CA, Burgess DR, Burgess DS. Nephrotoxicity during vancomycin therapy in combination with piperacillin-tazobactam or cefepime. Antimicrob Agents Chemother. 2017;61:e02089-e2116. https://doi.org/10.1128/AAC.02089-16.
Comments (0)