Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS (2021) AntiCP 20: an updated model for predicting anticancer peptides. Briefings Bioinform 22(3):153. https://doi.org/10.1093/bib/bbaa153
Ahmed S et al (2021) ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Sci Rep 11(1):23676. https://doi.org/10.1038/s41598-021-02703-3
Article CAS PubMed Central Google Scholar
Arif M, Musleh S, Fida H, Alam T (2024) PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci Rep 14:1. https://doi.org/10.1038/s41598-024-67433-8
Bai, Shaojie, Kolter J, Koltun, Vladlen (2018) An mpirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR, abs/1803.01271. https://arxiv.org/abs/1803.01271
Bian J, Liu X, Dong G, Hou C, Huang S, Zhang D (2024) ACP-ML: a sequence-based method for anticancer peptide prediction. Comput Biol Med 170:108063. https://doi.org/10.1016/j.compbiomed.2024.108063
Chen W, Ding H, Feng P, Lin H, Chou KC (2016) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7(13):16895–16909. https://doi.org/10.18632/oncotarget.7815
Article PubMed Central Google Scholar
Chen Z et al (2021) iLearnPlus:a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Research 49(10):e60. https://doi.org/10.1093/nar/gkab122
Article CAS PubMed Central Google Scholar
Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57:678–696. https://doi.org/10.3892/ijo.2020.5099
Article CAS PubMed Central Google Scholar
Devlin J, Chang M.-W, Lee K, and Toutanova K (2019) "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," in North American Chapter of the Association for Computational Linguistics. [Online]. Available: https://doi.org/10.48550/arXiv.1810.04805
Dong F, Zhao G, Tong H, Zhang Z, Lao X, Zheng H (2020) The prospect of bioactive peptide research: a review on databases and tools. Curr Bioinform 16:494–504. https://doi.org/10.2174/1574893615999200813192148
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565
Article CAS PubMed Central Google Scholar
Gawde U et al (2023) CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 51(D1):D377–D383. https://doi.org/10.1093/nar/gkac933
Ge R, Feng G, Jing X, Zhang R, Wang P, Wu Q (2020) EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides. Front Genet 11:760. https://doi.org/10.3389/fgene.2020.00760
Article CAS PubMed Central Google Scholar
Guoxin Wang YL, Lei Cui, Tengchao Lv, Dinei Florencio, Cha Zhang, (2022) "A Simple yet Effective Learnable Positional Encoding Method for Improving Document Transformer Model," Association for Computational Linguistics, AACL-IJCNLP 2022, 453–463, 2022. https://doi.org/10.18653/v1/2022.findings-aacl.42
Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H (2014) Predicting anticancer peptides with Chou′s pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 341:34–40. https://doi.org/10.1016/j.jtbi.2013.08.037
He W, Wang Y, Cui L, Su R, Wei L, Martelli PL (2021) Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides. Bioinformatics 37(24):4684–4693. https://doi.org/10.1093/bioinformatics/btab560
Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778(2):357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
Karim T, Shaon MSH, Sultan MF, Hasan MZ, Kafy AA (2024) "ANNprob-ACPs: a novel anticancer peptide identifier based on probabilistic feature fusion approach". Comput Biol Med 169 https://doi.org/10.1016/j.compbiomed.2023.107915
Kha QH, Le VH, Hung TN, Nguyen NT, Le NQ (2023) Development and validation of an explainable machine learning-based prediction model for drug-food interactions from chemical structures. Sensors 23(8):3962. https://doi.org/10.3390/s23083962
Article CAS PubMed Central Google Scholar
Kingma, Diederik & Ba, Jimmy (2014) Adam: a method for stochastic optimization, International Conference on Learning Representations. 1412(6980):6980. https://doi.org/10.48550/arXiv.1412.6980
Kumar Sangaraju V, Truong Pham N, Wei L, Yu X, Manavalan B (2024) mACPpred 20: stacked deep learning for anticancer peptide prediction with integrated spatial and probabilistic feature representations. J Mol Biol 436(17):168687. https://doi.org/10.1016/j.jmb.2024.168687
Le NQK, Li W, Cao Y (2023) Sequence-based prediction model of protein crystallization propensity using machine learning and two-level feature selection. Briefings Bioinform 24(5):bbad319. https://doi.org/10.1093/bib/bbad319
Li F-M, Wang X-Q (2016) Identifying anticancer peptides by using improved hybrid compositions. Sci Rep 6(1):33910. https://doi.org/10.1038/srep33910
Article CAS PubMed Central Google Scholar
Li C, Zou Q, Jia C, Zheng J (2023) AMPpred-MFA: an interpretable antimicrobial peptide predictor with a stacking architecture, multiple features, and multihead attention. J Chem Inf Model 64(7):2393–2404. https://doi.org/10.1021/acs.jcim.3c01017
Li Z et al (2023) ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides. Bioinformatics 39(3):btad108. https://doi.org/10.1093/bioinformatics/btad108
Article CAS PubMed Central Google Scholar
Liang X, Zhao H, Wang J (2024) MA-PEP: a novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism. Protein Sci 33(4):e4966. https://doi.org/10.1002/pro.4966
Article CAS PubMed Central Google Scholar
Liu Y, Yu Z, Chen C, Han Y, Yu B (2020) Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net. Anal Biochem 609:113903. https://doi.org/10.1016/j.ab.2020.113903
Lundberg SM and Lee S.-I (2017) "A Unified Approach to Interpreting Model Predictions," in Neural Information Processing Systems. [Online]. Available: https://doi.org/10.48550/arXiv.1705.07874
LV Z, Cui F, Zou Q, Zhang L, Xu L (2021) Anticancer peptides prediction with deep representation learning features. Brief Bioinform 22(5):bbab008. https://doi.org/10.1093/bib/bbab008
Ma K et al (2022) DC-CNN: Dual-channel convolutional neural networks with attention-pooling for fake news detection. Appl Intell 53(7):8354–8369. https://doi.org/10.1007/s10489-022-03910-9
Ma T et al (2024) DRAMP 4.0: an open-access data repository dedicated to the clinical translation of antimicrobial peptides. Nucleic Acids Res 53:D403–D410. https://doi.org/10.1093/nar/gkae1046
Article PubMed Central Google Scholar
Maaten LVD, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579-2605. http://jmlr.org/papers/v9/vandermaaten08a.html
Maeda H, Khatami M (2018) Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 7:1. https://doi.org/10.1186/s40169-018-0185-6
Oord AVD et al (2016) "WaveNet: A Generative Model for Raw Audio," in Speech Synthesis Workshop
Rao B, Zhou C, Zhang G, Su R, Wei L (2020) ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Brief Bioinform 21(5):1846–1855. https://doi.org/10.1093/bib/bbz088
Reshef DN et al (2011) Detecting Novel Associations in Large Data Sets. Science 334(6062):1518–1524. https://doi.org/10.1126/science.1205438
Article CAS PubMed Central Google Scholar
Soon NT, Chia YYA, Yap HW, Tang Y-Q (2020) Anticancer Mechanisms of Bioactive Peptides. Protein Pept Lett 27(9):823–830. https://doi.org/10.2174/0929866527666200409102747
Sung H et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
Comments (0)