Abdelhameed RE, Hegazy HS, Abdalla H, Adarosy MH (2025) Efficacy of green synthesized titanium dioxide nanoparticles in Attenuation salt stress in Glycine max plants: modulations in metabolic constituents and cell ultrastructure. BMC Plant Biol 25:221. https://doi.org/10.1186/s12870-025-06194-6
Article CAS PubMed PubMed Central Google Scholar
Ali M, Farooq M, Shah AN, Abbasi GH et al (2025) Role of melatonin in leaf gas exchange by redox regulation, K + Homeostasis and gene expression in Canola under salinity stress. J Soil Sci Plant Nutr 2025:1–18. https://doi.org/10.1007/s42729-025-02229-x
Ashraf M, Munns R (2022) Evolution of approaches to increase the salt tolerance of crops. CRC Crit Rev Plant Sci 41:128–160. https://doi.org/10.1080/07352689.2022.2065136
Batool I, Ayyaz A, Zhang K, Hannan F et al (2025) Transcriptome and physiological analyses unravel chromium stress tolerance mechanism in Brassica napus L. J Plant Growth Regul 2025:1–17. https://doi.org/10.1007/s00344-025-11670-2
Chele KH, Tinte MM, Piater LA, Dubery IA et al (2021) Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites 11:724. https://doi.org/10.3390/metabo11110724
Article CAS PubMed PubMed Central Google Scholar
Dai Z, Dong S, Miao H, Liu X et al (2022) Genome-Wide identification of TIFY genes and their response to various pathogen infections in cucumber (Cucumis sativus L). Sci Hort 295:110814. https://doi.org/10.1016/j.scienta.2021.110814
Ebrahimi A, Chenar HM, Rashidi-Monfared S, Kahrizi D (2025) Enhancing food security via selecting superior Camelina (Camelina sativa L.) parents: a positive approach incorporating pheno-morphological traits, fatty acids composition, and tocopherols content. BMC Plant Biol 25:53. https://doi.org/10.1186/s12870-024-06022-3
Article CAS PubMed PubMed Central Google Scholar
Hamidian M, Movahhedi-Dehnavi M, Sayyed RZ, Almalki WH et al (2023) Co-inoculation of mycorrhiza and Methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Sci Rep 13:7378. https://doi.org/10.1038/s41598-023-34359-6
Article CAS PubMed PubMed Central Google Scholar
Himabindu Y, Chakradhar T, Reddy MC, Kanygin A et al (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63. https://doi.org/10.1016/j.envexpbot.2015.11.010
Imran QM, Falak N, Hussain A, Mun B-G et al (2021) Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11:1579. https://doi.org/10.3390/agronomy11081579
Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. CRC Crit Rev Plant Sci 30:435–458. https://doi.org/10.1080/07352689.2011.605739
Jiang L, Xiao W, Chen H, Qi Y et al (2024a) The OsGAPC1-OsSGL module negatively regulates salt tolerance by mediating abscisic acid biosynthesis in rice. New Phytol 244:825–839. https://doi.org/10.1111/nph.20061
Article CAS PubMed Google Scholar
Jiang X, Zhi S, Liu J, Guo S et al (2024b) MYC2 involves in erucic acid synthesis by negatively regulation fae1 transcription activity in brassica napus. Pak J Bot 56:2389–2398. https://doi.org/10.30848/PJB2024-6
Lai Y, Zhang C, Yan H, Nai G et al (2025) Research progress on grapevine response mechanisms and alleviation measures under salt stress. J Plant Growth Regul 2025:1–14. https://doi.org/10.1007/s00344-025-11640-8
Lamichhane S, Thapa S (2022) Advances from conventional to modern plant breeding methodologies. Plant Breed Biotechnol 10:1–4. https://doi.org/10.9787/PBB.2022.10.1.1
Li Y, Zhou J, Li Z, Qiao J et al (2022) Salt and ABA response ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiol 189:1110–1127. https://doi.org/10.1093/plphys/kiac125
Article CAS PubMed PubMed Central Google Scholar
Li J, Li G, Zhu C, Wang S et al (2025) Genome-Wide identification and expression analysis of bHLH-MYC family genes from mustard that May be important in trichome formation. Plants 14:268. https://doi.org/10.3390/plants14020268
Article CAS PubMed PubMed Central Google Scholar
Liao W, Tang X, Li J et al (2024) Genome wide investigation of Hsf gene family in Phoebe bournei: identification, evolution, and expression after abiotic stresses. J Res 35:11. https://doi.org/10.1007/s11676-023-01661-y
Liu H, Cui P, Zhang B, Zhu J et al (2022) Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa. PLoS ONE 17:e0276075. https://doi.org/10.1371/journal.pone.0276075
Article CAS PubMed PubMed Central Google Scholar
Mirzaei AR, Fazeli-Nasab B, Valizadeh M (2023) Chap. 18 - Ecological and structural attributes of soil rhizobiome improving plant growth under environmental stress. In: Parray JA, Shameem N, Egamberdieva D editors. Rhizobiome: Academic Press. p 403–420. https://doi.org/10.1016/B978-0-443-16030-1.00003-1
Qian X, Liu H, Zhou J, Zhu W et al (2025) The potassium utilization gene network in Brassica napus and functional validation of BnaZSHAK5. 2 gene in response to potassium deficiency. Int J Mol Sci 26:794. https://doi.org/10.3390/ijms26020794
Article CAS PubMed PubMed Central Google Scholar
Raza A, Tabassum J, Fakhar AZ, Sharif R et al (2023) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 43:1035–1062. https://doi.org/10.1080/07388551.2022.2093695
Article CAS PubMed Google Scholar
Shah AN, Tanveer M, Abbas A, Fahad S et al (2021) Targeting salt stress coping mechanisms for stress tolerance in brassica: A research perspective. Plant Physiol Biochem 158:53–64. https://doi.org/10.1016/j.plaphy.2020.11.044
Article CAS PubMed Google Scholar
Shi G, Liu G, Liu H et al (2024) A new glucosyltransferase UGT78 from Iris sanguinea is a putative negative regulator in cadmium stress response. J Res 35:77. https://doi.org/10.1007/s11676-024-01726-6
Sims I, Jayaweera D, Swarup K, Ray RV (2023) Molecular characterization of defense of Brassica napus (Oilseed Rape) to rhizoctonia Solani AG2-1 confirmed by functional analysis in Arabidopsis thaliana. Phytopathology® 113:1525–1536. https://doi.org/10.1094/PHYTO-08-22-0305-R
Article CAS PubMed Google Scholar
Singh A, Roychoudhury A (2021) Gene regulation at transcriptional and post-transcriptional levels to combat salt stress in plants. Physiol Plant 173:1556–1572. https://doi.org/10.1111/ppl.13502
Article CAS PubMed Google Scholar
Song C, Cao Y, Dai J, Li G et al (2022) The multifaceted roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Front Plant Sci 13:868874. https://doi.org/10.3389/fpls.2022.868874
Article PubMed PubMed Central Google Scholar
Song X, Zhang M, Wang TT, Duan YY et al (2025) Polyploidization leads to salt stress resilience via ethylene signaling in citrus plants. New Phytol 246:176–191. https://doi.org/10.1111/nph.20428
Article CAS PubMed Google Scholar
Srivastava M, Srivastava AK, Roy D, Mansi M et al (2022) The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. Plant Cell 34:2892–2906. https://doi.org/10.1093/plcell/koac142
Article PubMed PubMed Central Google Scholar
Ullah MS, Mahmood A, Alawadi HFN, Seleiman MF et al (2025) Silicon-mediated modulation of maize growth, metabolic responses, and antioxidant mechanisms under saline conditions. BMC Plant Biol 25:3. https://doi.org/10.1186/s12870-024-06013-4
Comments (0)